
XENIX® System V

Development System

Programmer's Reference

Infonnation in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the tenns of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983,1984,1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-1O-31-88-5.0/2.3

Alphabetized List
Commands, Systems Calls, Library Routines and File Formats

8087 8087 (HW) backup backup (C)
86rel 86rel (F) backup backup (F)
a641 a641(S) badtrk badtrk(ADM)
a.out a.out(F) banner banner(C)
abort abort(S) basename basename(C)
abs abs(S) batch at (C)
accept accept (C) bc bc(C)
access accesseS) bdiff bdiff(C)
acct acct(F) bdos bdos(DOS)
acct acct (S) bessel bessel (S)
acctcom acctcom (ADM) bfs bfs(C)
accton accton (ADM) boot " boot(HW)
acos trig (S) brk sbrk(S)
adb adb(CP) brkctl brkctl (S)
adfmt adfmt(ADM) bsearch bsearch(S)
admin admin(CP) cal cal (C)
alarm alarm(S) calendar calendar(C)
aliases aliases (M) calloc malloc (S)
aliases. hash aliases (M) cancel lp (C)
aliashash aliashash(ADM) capinfo capinjo(C)
ar ar(CP) cat cat(C)
ar ar(F) catimp catimp (CT)
archive archive (F) cb cb(CP)
ascii ascii (M) cc cc(CP)
asctime ctime (S) cd cd(C)
asin trig (S) cdc cdc (CP)
ask time asktime (ADM) ceil jloor(S)
assert assert(S) cHow cjlow(CP)
assign assign(C) cgets cgets (DOS)
asx asx (CP) character eqnchar(CT)
at at(C) charmap charmap(CT)
atan trig (S) chdir chdir(S)
atan2 trig (S) checkcw '" cw (CT)
atof atof(S) checkeq eqn(CT)
atof strtod(S) checklist checklist (F)
atoi atof(S) checkmm checkmm (CT)
atoi strtol (S) chgrp chgrp(C)
atol atof(S) chmod chmod(C)
atol strtol (S) chmod chmod(S)
aUiobcot autobcot(ADM) chown ". chown(C)
a,"K awk(C) chown chown(S)

chroot chroot(ADM) ctime ctime(S)
chroot chroot(S) ctype ctype (S)
chsh chsh (ADM) cu cu(C)
chsize chsize (S) curses curses(S)
clear clear (C) cuserid cuserid (S)
clearerr ferror(S) custom custom(ADM)
clock clock (F) cut cut(CT)
clock clock (S) cw cw(CT)
close close (S) cwcheck cw(CT)
closedir directory (S) cxref cxref(CP)
clri clri (ADM) daemon.mn daemon.mn (M)
cmchk cmchk(C) date date (C)
cmos cmos (HW) dbminit dbm(S)
cmp cmp(C) dc dc(C)
coffconv coffconv (M) dd dd(C)
col col (CT) deassign assign (C)
comb comb(CP) deco deco(CT)
comm comm (C) default default (F)
compress compress(C) definitions eqnchar(CT)
con fig config(ADM) defopen defopen (S)
configure configure(ADM) defread defopen (S)
console console (M) delete dbm(S)
consoleprint. consoleprint (ADM) delta delta (CP)
contains eqnchar(CT) deroff deroff(CT)
con v conv (S) devnm devnm(C)
convkey mapkey (M) df df(C)
copy copy(C) dial dial(ADM)
core core(F) dial dial (S)
cos trig (S) diction diction (CT)
cosh sinh (S) diff difJ(C)
cp cp(C) dif13 diff3 (C)
cpio cpio(C) diffink dijJmk(CT)
cpio cpio (F) dir dir(F)
cpp cpp(CP) dircmp dircmp(C)
cprintf cprint/(DOS) directory directory (S)
cputs cputs(DOS) dirent dirent (F)
creat createS) dirname dirname(C)
creatsem creatsem (S) disable disable (C)
cref cref(CP) diskcmp diskcp (C)
cron cron(C) diskcp diskcp(C)
cscanf cscanf(DOS) divvy divvy (ADM)
csh csh(C) dmesg dmesg(ADM)
csplit csplit(C) dos dos(C)
ct ct(e) doscat dos(C)
ctags ctags(CP) doscp dos(C)
ctermid ctermid (S) dosdir dos(C)

ii

dosexterr dosexter (DOS)
dosformat dos(C)
dosld " dosld (CP)
dosls dos(C)

ev gindev ev gindev (S)
ev - getemask ev -gtemsk(S)
ev -init -: ev init (S)
ev=open ev_open(S)

dosmkdir dos(C) ev.J>op ev yop(S)
dosrm dos(C)
dosrmdir dos(C)
dparam dparam(ADM)
drand48 drand48(S)

ev read ev read(S)
ev -resume ev resume (S)
ev-setemask ev stemsk(S)
ev =suspend ev _susp(S)

dtype dtype(C) ex exeC)
du du(C) execl exec (S)
dump dump(C) execle exec (S)
dump dump(F) execlp exec (S)
dumpdir dumpdir(C) execseg execseg (S)
dup dupeS) execv exec (S)
dup2 dupeS) execve exec (S)
dviimp dviimp (CT) execvp exec (S)
echo echo (C) exit exit(DOS)
ecvt ecvt(S) exit exit(S)
ed ed(C)
edata end(S)

exit exit(S)
exp exp(S)

egrep grep(C) explain explain (CT)
enable enable (C) expr expr(C)
enco deco (CT) fabs jloor(S)
end end(S) factor factor(C)
endgrent getgrent (S) faliases aliases (M)
endpwent getpwent(S) false false(C)
endutent getut(S) fclose fclose (DOS)
env env(C) fclose fclose (S)
environ environ (M) fcloseall fclose (DOS)
eof eof(DOS) fcntl fcntl (S)
eqn eqn(CT) fcvt ecvt(S)
eqn eqnchar(CT) fd fd(HW)
eqnchar eqnchar(CT) fdisk fdisk(ADM)
eqncheck eqn(CT) fdopen fopen(S)
erand48 drand48(S) fdswap fdswap(ADM)
erf er/(S) feof ferror(S)
erfc erf(S) ferror ferror(S)
errno perror(S) fetch dbm(S)
error error(M) mush fclose(S)
etext end(S) fgetc fgetc(DOS)
ev block ev block(S)
ev -close ev-close (S)
ev-count ev -count(S)
ev =flush evJzush(S)

fgetc getc (S)
fgetchar fgetc (DOS)
fgets gets (S)
fgrep grep(C)

ev _getdev ev _getdev (S) file file(C)

iii

filelength fileleng (DOS) get get(CP)
fileno ferror(S) getc getc (S)
filesys , filesys (F) getch getch (DOS)
filesystem filesystem (F) getchar getc (S)
find find(C) getche getche (DOS)
finger finger(C) getcwd getcwd(S)
firstkey dbm(S) getdents getdents (S)
fixhdr fixhdr(C) getegid getuid (S)
fixpad capinfo (C) get en v getenv (S)
fixperm fixperm(ADM) geteuid getuid (S)
floor fioor(S) getgid getuid(S)
f1ushall fiushall (DOS) getgrent getgrent(S)
fmod fioor(S) getgrgid getgrent(S)
fopenjopen (S) getgrnam getgrent (S)
for eqnchar(CT) getlogin getlogin (S)
fork fork(S) getopt getopt(C)
formatjormat(C) getopt getopt(S)
fp_off fp_seg(DOS) getpass getpass(S)
fprintf printf(S) getpgrp getpid (S)
fp_seg fp_seg(DOS) getpid getpid (S)
fputc fputc (DOS) getppid getpid (S)
fputc putc (S) getpw getpw(S)
fputchar fputc (DOS) getpwent getpwent (S)
fputs puts(S) getpwnam getpwent(S)
fread fread(S) getpwuid getpwent(S)
free maUoc (S) gets gets (CP)
freopenjopen(S) gets gets(S)
frexp frexp(S) getty getty (M)
fsave fsave(ADM) gettydefs gettydefs (F)
fscanf scanj(S) getuid getuid (S)
fsck fsck(ADM) getut getut(S)
fsdb fsdb(ADM) getutent getut(S)
fseek fseek(S) getutid getut(S)
fsname fsname(ADM) getutline getut(S)
fsphoto fsphoto(ADM) getw 0 getc (S)
fstab fstab(F) gmtime ctime (S)
fstat stateS) grep grep(C)
fstatfs statfs (S) group group(F)
ftell fseek(S) grpcheck grpcheck(C)
ftime time (S) gsignal ssignal (S)
ftok stdipc (S) haltsys haltsys (ADM)
ftw ftw(S) hash check spell (CT)
fwrite fread(S) hashmake " spell (CT)
fxlist 00 ••••••••••••• xlist (S) hcreate hsearch (S)
gamma gamma(S) hd hd(C)
gcvt ecvt(S) hd hd(ffW)

iv

hdestroy hsearch (S) ips ips (ADM)
hdinstall hdinstall (ADM) isalnum ctype (S)
hdr hdr(CP) isalpha ctype (S)
head head(C) isascii ctype (S)
hello hello (C) isatty isatty (DOS)
help help (C) isatty ttyname (S)
help help (CP) isbs ips (ADM)
hseareh hsearch(S) isentrl ctype (S)
hweonfig hwconfig(C) isdigit ctype (S)
hyphen hyphen (CT) isgraph ctype (S)
hypot hypot(S) islower ctype (S)
id id(C) isprint ctype (S)
idleout idleout (ADM) ispunct ctype (S)
imaect imacct (C) isspaee ctype (S)
imagen imagen(M) isupper ctype (S)
imagen.pbs imagen(M) isxdigit ctype (S)
imagen.remote imagen (M) ito a itoa (DOS)
imagen.sbs imagen (M) itroff itrojf(CT)
imagen.spp imagen (M) jO bessel (S)
imprint imprint(C) jl bessel(S)
~~print impri~t.(CT)
Inlr lnlt(M)

jn bessel (S)
join join(C)

init init (M) jrand48 drand48(S)
inittab inittab (F) kbhit kbhit(DOS)
inode ... ' inode(F) kbmode kbmode(ADM)
inp inp(DOS) keyboard keyboard (HW)
install install (ADM) kill kill (C)
int86 int86 (DOS) kill kill (S)
int86x int86x(DOS) kmem mem (F)
intdos intdos(DOS) I ... I(C)
intdosx intdosx(DOS) 13tol 13tol (S)
intro Intro(ADM) 164a a641(S)
intro Intro(C) labs labs(DOS)
intro Intro(CP) last last(C)
intro Intro(CT) Ie .. lc(C)
intro intro(DOS) lcong48 drand48(S)
intro Intro(F) Id ld(M)
intro Intro(HW) Id ld(CP)
intro Intro(M) Idexp frexp (S)
intro Intro(S) lex lex(CP)
ioetl ioctl (S) lfind lsearch (S)
ipbs ips(ADM) line line (C)
iperm ipcrm(ADM) link link(S)
ipes ipcs (ADM) lint lint (CP)
ipr ipr(C) In In(C)
iprint iprint(C) loealtime ctime (S)

v

lock lock(C) masm masm(CP)
lock lock(S) master master(F)
lockf lockf(S) matherr matherr(S)
locking locking (S) mem mem(F)
log exp(S) memccpy memory(S)
loglO exp(S) memchr memory(S)
login login (M) memcmp memory(S)
logname logname(C) memcpy memory(S)
logname logname (S) memset memory(S)
longjmp setjmp (S) mesg mesg(C)
look look(CT) messages messages (M)
lorder lorder(CP) micnet micnet(F)
Ip lp(C) mkdev mkdev (ADM)
Ip lp(HW) mkdir mkdir(C)
IpO lp(HW) mkdir mkdir(DOS)
Ipl lp(HW) mkfs mkfs(ADM)
Ip2 lp(HW) mkinittab telinit (ADM)
Ipadmin Ipadmin (ADM) mknod mknod(C)
Ipinit lpinit(ADM) mknod mknod(S)
lpmove lpsched (ADM) mkstr mkstr(CP)
lpr lp(C) mktemp mktemp (S)
lpr lpr(C) mkuser mkuser(ADM)
Iprint Iprint(C) mm mm(CT)
lpsched lpsched (ADM) mmcheck checkmm (CT)
lpshut lpsched (ADM) mmt mmt(CT)
lpstat Ipstat(C) mnt mnt(C)
Irand48 drand48(S) mnttab mnttab (F)
Is .. Is(C) modf frexp(S)
lsearch lsearch (S) monitor monitor(S)
Iseek lseek (S) more more(C)
Itoa ltoa(DOS) mount mount(ADM)
ltol3 13tol (S) mount mount(S)
m4 m4(CP) mouse mouse (HW)
machine machine (HW) movedata movedata (DOS)
mail mail(C) mrand48 drand48(S)
make make (CP) mscreen mscreen (M)
makekey makekey (ADM) msgctl msgctl (S)
maliases aliases (M) msgget msgget(S)
maliases.hash aliases (M) msgop msgop(S)
malloc maUoc (S) multiscreen multiscreen (M)
man man(CT) mv mv(C)
mapchan mapchan(F) mvdir mvdir(ADM)
mapchan mapchan(M) nap nap(S)
map key mapkey (M) nbwaitsem waitsem (S)
mapscrn mapkey (M) ncheck ncheck (ADM)
mapstr mapkey (M) neqn eqn(CT)

vi

neqn neqn (CT) ptx ptx(CT)
netutil netutil (ADM) putc putc(S)
newform newform(C) putch putch(DOS)
newgrp newgrp(C) putchar putc (S)
news news(C) putenv putenv (S)
nextkey dbm(S) putpwent putpwent(S)
nice nice (C) puts puts(S)
nice nice (S) pututline getut(S)
nl nl(C) putw putc (S)
nlist nlist(S) pwadmin pwadmin (ADM)
nm nm(CP) pwcheck pwcheck (C)
nohup nohup(C) pwd pwd(C)
nrand48 drand48(S) qsort qsort(S)
nroft' nroff(CT) quot quot(C)
null null (F) ram disk ramdisk (HW)
od od(C) rand rand(S)
oldipr ipr(C) random random(C)
open open(S) ranlib ranlib(CP)
opendir directory (S) ratfor ratfor(CP)
opensem opensem(S) rcp rcp(C)
outp outp(DOS) rdchk rdchk(S)
pack pack(C) read read(S)
parallel parallel (HW) readdir directory (S)
passwd passwd(C) realloc malloc(S)
passwd passwd(F) reboot haltsys (ADM)
paste paste (CT) red red(C)
pause pause(S) regcmp regcmp(CP)
pcat pack(C) regcmp regex(S)
pclose popen(S) regex regex(S)
perror perror(S) regexp regexp (S)
pg pg(C) reject accept(C)
pipe pipe(S) remote remote (C)
plock plock(S) rename rename(DOS)
pop en popen(S) restor restore (C)
pow exp(S) restore restore (C)
pr pr(C) rewindfseek(S)
prep prep (CT) rewinddir directory (S)
printf printf(S) rm rm(C)
proctl proctl (S) rmdel rmdel (CP)
prof prof(CP) rmdir rm(C)
profil profileS) rmdir rmdir(C)
profile profile (M) rmdir rmdir(DOS)
prs prs(CP) rmuser rmuser(ADM)
ps ps(C) rsh rsh(C)
pstat pstat(C) runbig runbig (ADM)
ptrace ptrace (S) sact sact (CP)

vii

sbrk sbrk(S) shutdn shutdn(S)
scanf scanf(S) shutdown shutdown(ADM)
sccsdiff sccsdiff(CP) signal signal (S)
sccsfile sccsfile (F) sigsem sigsem(S)
schedule schedule (ADM) sin trig(S)
screen screen (HW) sinh sinh (S)
scsi scsi (HW) size size (CP)
sdb sdb(CP) sleep sleep (C)
sddate sddate (C) sleep sleep (S)
sdenter sdenter(S) soelim soelim(CT)
sdfree sdget(S) sop en sopen(DOS)
sdget sdget(S) sort sort(C)
sdgetv sdgetv(S) spawnl spawn(DOS)
sdiff sdijJ(C) spawnvp spawn(DOS)
sdleave sdenter(S) special eqnchar(CT)
sdwaitv sdgetv (S) spell spell (CT)
sed sed (C) spellin spell (CT)
seed48 drand48(S) spline spline (CP)
seekdir directory (S) split split(C)
segread segread(DOS) sprintf printf(S)
select select (S) sputl sputl (S)
semctl semctl (S) sqrt exp(S)
semget semget(S) srand48 rand(S)
semop semop (S) sscanf scanf(S)
serial '" serial (HW) ssignal ssignal (S)
setbuf setbu/(S) stat stat(F)
setclock setclock (ADM) stat stateS)
setcolor setcolor (C) statfs statfs (S)
setgid .. , setuid (S) stdio stdio(S)
setgrent getgrent (S) stime stime(S)
setjrnp setjmp (S) store dbm(S)
setkey setkey (C) strcat string(S)
setmnt setmnt(ADM) strchr string(S)
setmode setmode(DOS) strcmp string(S)
setpgrp setpgrp (S) strcpy string(S)
setpwent getpwent(S) strcspn string(S)
settime settime (ADM) strdup string (S)
setuid setuid (S) string string(S)
setutent getut (S) strings strings (CP)
setvbuf setbu/(S) strip strip(CP)
sgetl sputl (S) strlen strlen (DOS)
sh sh(C) strlwr strlwr(DOS)
shl shl(C) strncat string(S)
shmctl shmctl (S) strncmp string (S)
shmget shmget(S) strncpy " string(S)
shmop shmop(S) strpbrk string(S)

viii

strrchr string (S) terminfo terminfo (M)
strrev strrev (DOS) terminfo terminfo (S)
strset strset(DOS) termio termio (M)
strspn string (S) test test(C)
strtod strtod (S) Hind tsearch (S)
strtok string (S) tgetent term cap (S)
strtol strtol (S) tgetfiag termcap (S)
strupr strupr(DOS) tgetnum term cap (S)
stty stty (C) tgetstr termcap (S)
style style (CT) tgoto termcap (S)
su su(C) tic tic (C)
sum sum(C) tid tid (C)
swab swab(S) time time (CP)
swapadd swapadd(S) time time (S)
sxt sxt(M) times times(S)
sync sync (ADM) tmpfile tmpfile (S)
sync sync (S) tmpnam tmpnam(S)
sysadmin sysadmin (ADM) to ascii con v (S)
sysadmsh sysadmsh(ADM) to ascii ctype (S)
sys err list perror(S)
sys = nerr perror(S)

tolower conv(S)
tolower ctype (S)

sysi86 sysi86 (S) top top (F)
system system (S) top.next top (F)
systemid systemid (F) touch touch (C)
systty systty (M) toupper con v (S)
tail tail (C) toupper ctype (S)
tan trig (S) tput tput(C)
tanh sinh(S) tputs termcap (S)
tape tape (C) tr .. tr(C)
tape tape (HW) translate translate (C)
tapedump tapedump (C) trchan trc han (M)
tar tar(C) troff trojJ(CT)
tar tar(F) true true (C)
tbi tbl (CT) tsearch tsearch (S)
tdelete tsearch (S) tset tset(C)
tee tee (C) tsort tsort(CP)
telinit telinit (ADM) tty tty (C)
tell tell (DOS) tty tty(M)
telldir directory (S) ttyname ttyname (S)
tempnam tmpnam(S) ttys ttys (F)
term term(CT) ttyslot ttyslot (S)
term term(F) twalk tsearch (S)
term cap termcap (M) types types (F)
terminal terminal (HW) TZ tz(M)
terminals terminals (M) tzset ctir:vze (S)
terminfo terminfo (F) uadmin uadmin(S)

IX

uUrnit ulimit (S) vms tat vmstat(C)
ultoa ultoa(DOS) vprintf vprint/(S)
umask umask(C) vsh vsh(C)
umask umask(S) vsprintf vprint/(S)
umount umount(ADM) w .. w(C)
umount umount(S) wait wait(C)
uname uname(C) wait waiteS)
uname uname(S) waitsem waitsem (S)
uncompress compress(C) wall wall (ADM)
unget unget(CP) wc wc(C)
ungetc ungetc (S) what what(C)
ungetch ungetch (DOS) who who(C)
uniq uniq(C) whodo whodo(C)
units units(C) write write (C)
unlink unlink(S) write write(S)
unpack pack(C) wtmp utmp(F)
uptime uptime (C) xargs xargs(C)
usernouse usemouse (C) xlist xlist (S)
ustat ustat(S) xref xref(CP)
utime utime(S) xstr xstr(CP)
utmp utmp(F) yO bessel (S)
,utmpnarne getut(S) yl bessel (S)
uuchat dial(ADM) yacc yacc (CP)
uucheck uucheck (ADM) yes yes(C)
uucico uucico (ADM) yn bessel (S)
uuclean uuclean (ADM) zcat compress(C)
uucp uucp(C)
uuencode uuencode (C)
uuinstall uuinstall (ADM)
uulog uucp(C)
uuname uucp(C)
uupick uuto(C)
uusched uusched(ADM)
uustat uustat(C)
uusub uusub(C)
uuto uuto(C)
uutry uutry (ADM)
uux uux(C)
uuxqt uuxqt(ADM)
val val (CP)
varargs varargs(S)
vedit vi (C)
vfprintf vprintj(S)
vi vi(C)
vidi vidi (C)
view vi(C)

x

Replace this Page
with Tab Marked:

Programming
Commands (CP)

Contents

Programming Commands (CP)

intro
adb
admin
ar
asx

cb
cc
cdc
cflow
comb
cpp
cref
ctags
cxref
delta
dosld
get
gets
hdr
help
Id
lex
lint
lorder
m4
make

masm
mkstr
nm
prof
prs
ranlib
ratfor

regcmp

Introduces XENIX Development commands.
Invokes a general-purpose debugger.
Creates and administers sees files.
Maintains archives and libraries.
Invokes the pre-cmerge C compiler XENIX

assembler.
Beautifies C programs.
Invokes the C compiler.
Changes the delta commentary of an sees delta.
Generates C program flow graph.
Combines sees deltas.
The C Language preprocessor.
Makes a cross-reference listing.
Creates a tags file.
C program cross reference.
Makes a delta (change) to an sees file.
XENIX to MS-DOS cross linker.
Gets a version of an sees file.
Gets a string from the standard input.
Displays selected parts of object files.
Asks for help about sees commands.
Invokes the link editor.
Generates programs for lexical analysis.
Checks C language usage and syntax.
Finds ordering relation for an object library.
Invokes a macro processor.
Maintains, updates, and regenerates groups of

programs.
Invokes cmerge C compiler XENIX assembler.
Creates an error message file from C source.
Prints name list.
Displays profile data.
Prints an sees file.
Converts archives to random libraries.
Converts Rational FORTRAN into standard

FORTRAN.
Compiles regular expressions.

rmdel
sact
sccsdiff
sdb
size
spline
strings
strip
time
tsort
unget
val
xref
xstr
yacc

ii

Removes a delta from an sees file.
Prints current sees file editing activity.
Compares two versions of an sees file.
Invokes symbolic debugger.
Prints the size of an object file.
Interpolates smooth curve.
Finds the printable strings in an object file.
Removes symbols and relocation bits.
Times a command.
Sorts a file topologically.
Undoes a previous get of an sees file.
Validates an sees file.
Cross-references C programs.
Extracts strings from C programs.
Invokes a compiler-compiler.

INTRO (CP) INTRO (CP)

Name

intro - Introduces XENIX Development System commands.

Description

This section describes use of the individual commands available in the
XENIX Development System. Each individual command is labeled
with the letters CP to distinguish it from commands available in the
XENIX Operating and Text Processing Systems. These letters are used
for easy reference from other documentation. For example, the refer­
ence cc (CP) indicates a reference to a discussion of the cc command
in this section, where the letter "C" stands for "Command" and the
letter "P" stands for "Programming".

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

where:

name

option

cmdarg

See Also

name [options] [cmdarg]

The filename or pathname of an executable file

A single letter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in -abcd or alternatively they are specified individu­
ally as in -a -b -c -d . The method of specifying
options depends on the syntax of the individual com­
mand. In the latter method of specifying options,
arguments can be given to the options. For example,
the -f option for many commands often takes a follow­
ing filename argument.

A pathname or other command argument not begin­
ning with a dash. It may also be a dash alone by itself
indicating the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the

October 10, 1988 Page 1

INTRO (CP) INTRO (CP)

case of "normal" termination) one supplied by the program (see
waiteS) and exit (S)). The former byte is ° for normal termination; the
latter is customarily ° for successful execution and nonzero to indicate
troubles such as erroneous parameters, or bad or inaccessible data. It
is called variously "exit code", "exit status", or "return code", and is
described only where special conventions are involved.

Notes

Not '~n commands adhere to the above synt~:tx.

Page 2 October 10, 1988

ADMIN (CP) ADMIN (CP)

Name

admin - Creates and administers sees files.

Syntax

admin [-0] r -i[name]] [-rrel] [-fflag[flag-val]] [-dflag[flag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

Description

admin is used to create new sees files and to change parameters of
existing ones. Arguments to admin may appear in any order. They
consist of options, which begin with -, and named files (note that
sees filenames must begin with the characters s.). If a named file
doesn't exist, it is created, and its parameters are initialized according
to the specified options. Parameters not initialized by a option are
assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSeeS files
(last component of the pathname does not begin with s.) and unread­
able files are silently ignored. If the dash - is given, the standard input
is read; eJch line of the standard input is taken to be the name of an
sees file to be processed. Again, nonsees files and unreadable files
are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-0

-i[name]

October 10, 1988

This option indicates that a new sees file is to be
created.

The name of a file from which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see -r below for delta number­
ing scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun­
tered. If this option is omitted, then the sees file is
created empty. Only one sees file may be created
by an admin command on which the i option is sup­
plied. Using a single admin to create two or more
sees files require that they be created empty (no -i
option). Note that the -i option implies the -n
option.

Page 1

ADMIN (CP) ADMIN (CP)

-rrel The release into which the initial delta is inserted.
This option may be used only if the -i option is also
used. If the -r option is not used, the initial delta is
inserted into release 1. The level of the initial delta
is always 1 (by default initial deltas are named 1.1).

-ff/ag This option specifies a flag, and possibly a value for
the flag, to be placed in the sees file. Several f
options may be supplied on a single admin com­
mand line. The allowable flags and their values are:

Page 2

b Allows use of the -b option on a get(CP)
command to create branch deltas.

cceil The highest release (Le., "ceiling"), a
number less than or equal to 9999, which may
be retrieved by a get(CP) command for edit­
ing. The default value for an unspecified c
flag is 9999.

ff/oor The lowest release (i.e., "floor"), a number
greater than ° but less than 9999, which may
be retrieved by a get(CP) command for edit­
ing. The default value for an unspecified f
flag is 1.

dSID The default delta number (SID) to be used by
a get (CP) command.

Causes the "No id keywords (ge6)" message
issued by get(CP) or delta (CP) to be treated
as a fatal error. In the absence of this flag, the
message is only a warning. The message is
issued if no sees identification keywords
(see get(CP» are found in the text retrieved
or stored in the sees file.

j Allows concurrent get (CP) commands for
editing on the same SID of an sees file. This
allows multiple concurrent updates to the
same version of the sees file.

llist A list of releases to which deltas can no
longer be made (get -e against one of these
"locked" releases fails). The list has the fol­
lowing syntax:

<list> ::= <range> I <list> , <range> I
<range> ::= RELEASE NUMBER a

October 10, 1988

ADMIN (CP)

-d[f7ag]

October 10, 1988

ADMIN (CP)

The character a in the list is equivalent to
specifying all releases for the named sees
file.

n Causes delta (CP) to create a "null" delta in
each of those releases (if any) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3
and 4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be nonex­
istent in the sees file preventing branch del­
tas from being created from them in the
future.

qtext User-definable text substituted for all
occurrences of the keyword in sees file text
retrieved by get(CP).

mmod module name of the sees file substituted for
all occurrences of the admin.CP keyword in
sees file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the sees file with the leading s.
removed.

ttype type of module in the sees file substituted
for all occurrences of
keyword in sees file text retrieved by
get (CP).

v [pgm] Causes delta (CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta (CP». (If this flag is set
when creating an sees file, the m option
must also be used even if its value is null).

Causes removal (deletion) of the specifiedflag from
an sees file. The -d option may be specified only
when processing existing sees files. Several -d
options may be supplied on a single admin com­
mand. See the -f option for allowable flag names.

llist A list of releases to be "unlocked". See the
-f option for a description of the I flag and the
syntax of a list.

Page 3

ADMIN (CP)

-alogin

-elogin

-y[comment]

-m[mrlist]

-h

-z

Page 4

ADMIN (CP)

A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the sees file. A group ID is
equivalent to specifying all login names common to
that group ID. Several a options may be used on a
~ingle admin cvmmand line. As many lagins, Of

numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical
to that of delta (CP). Omission of the -y option
results in a default comment line being inserted in
the form:

YY/MM/DD HH:MM:SS by login

The -y option is valid only if the -i and/or -0 options
are specified (i.e., a new sees file is being created).

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating
the initial delta in a manner identical to delta (CP).
The v flag must be set and the MR numbers are vali­
dated if the v flag has a value (the name of an MR
number validation program). Diagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees
file (see sccsfile(F», and to compare a newly com­
puted checksum (the sum of all the characters in the
sees file except those in the first line) with the
checksum that is stored in the first line of the sees
file. Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

The sees file checksum is recomputed and stored
in the first line of the sees file (see -h, above).

October 10, 1988

ADMIN (CP)

Files

ADMIN (CP)

Note that use of this option on a truly corrupted file
may prevent future detection of the corruption.

The last component of all sees filenames must be of the fonn s.file­
name. New sees files are created read-only (444 modified by umask)
(see chmod(C». Write pennission in the pertinent directory is, of
course, required to create a file. All writing done by admin is to a
temporary x-file, called x.filename, (see get(CP», created with read­
only pennission if the admin command is creating a new sees file, or
with the same mode as the sees file if it exists. After successful exe­
cution of admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that changes
are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755
and that sees files themselves be read-only. The mode of the direc­
tories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at
all except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of a text edi­
tor. Care must be taken! The edited file should always be processed
by an admin -h to check for corruption followed by an admin -z to
generate a proper checksum. Another admin -h is recommended to
ensure the sees file is valid.

admin also makes use of a transient lock file (called z.jllename),
which is used to prevent simultaneous updates to the sees file by
different users. See get(CP) for further infonnation.

See Also

delta(CP), ed(C), get(CP), help(C), prs(CP), what(C), sccsfile(F)

Diagnostics

Use help (C) for explanations.

October 10, 1988 Page 5

ADB (CP) ADB (CP)

Name

adb - Invokes a general-purpose debugger.

Syntax

adb [-w] [-p prompt] [objfil [corefile]]

Description

adb is a general purpose debugging program. It may be used to exam­
ine files and to provide a controlled environment for the execution of
XENIX programs.

obJiil is normally an executable program file of either XENIX format
or CaFE preferably containing a symbol table; if not then the sym­
bolic features of adb cannot be used although the file can still be
examined. The default filename for objfil is a~out. core file is assumed
to be a core image file produced after executing obj/il; the default for
core file is core.

Requests to adb are read from the standard input and responses are to
the standard output. If the -w option is present then both obj/if and
corefile are created if necessary and opened for reading and writing so
that files can be modified using adb. The QUIT and INTERRUPT
keys cause adb to return to the next command. The -p option defines
the prompt string. It may be any combination of characters. The
default is an asterisk (*).

In general requests to adb are of the fornl:

[address] [, cOllnt] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0.
For most commands COlint specifies how many times the command
will be executed. The default COlint is 1. address is a special expres­
sion having the form:

[segment:] offset

where segment gives the address of a specific text or data segment,
and offset gives an offset from the beginning of that segment. If seg­
ment is not given, the last segment value given in a command is used.

The interpretation of an address depends on the context it is used in.
If a subprocess is being debugged then addresses are interpreted in the
usual way in the address space of the subprocess. For further details
of address mapping see Addresses.

October 10, 1988 Page 1

ADB (CP) ADB (CP)

Expressions

The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

illfcger A.n octal IW·-.-_l:-er if iJJtegcr begins with a 0; a hexJdccimal
number if preceded by # or Ox; otherwise a decimal number.

integer .fraction
A 32.-bit floating point number.

'ecce' The ASCII value of up to 4 characters. \ may be used to
escape a '.

< llame The value of llame. which is either a variable name or a
register name. adb maintains a number of variables (see
Fariables) named by single letters or digits. If name is a
register name then the value of the register is obtained from
th~ system header in coreflle. The register names are ax bx
ex dx di si bp tI ip cs ds ss es sp. The name fl refers to the
status flags.

sylJlboi A sYlllbu(is a sequence of upper or lower case letters, under­
scores or digits. not starting with a digit. The value of the
symbol is taken from the symbol table ~in obJfil. An initial
or - will be prepended to symbol if needed.

symbol
. In C, the 'true name' of an external symbol begins with _. It

may be necessary to use this name to distinguish it from
internal or hidden variables of a program.

(exp) The value of the expression exp.

Monadic operators

The contents of the location addressed by exp.

-e_\]J Integcr negation.

Bitwise complemcnt.

Page 2. October 10, 1988

ADB (CP) ADB (CP)

Dyadic operators

Dyadic operators are left-associative and are less binding than
monadic operators.

el +e2 Integer addition.

el -e2 Integer subtraction.

el *,'2 Integer multip1icat~rm.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el I e2 Bitwise disjunction.

el A e2 Remainder after division of el by e2.

el #e2 E1 rounded up to the next multiple of e2 .

Commands

Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands '7' and
'/' may be followed by '*': sec Addresses for further details.)

7f Locations starting at text address in obJfil are printed according
to the format f.

If Locations starting at data address in corefile are printed
according to the format f.

=f The value of address itself is printed in the styles indicated by
the format f. (For i format '7' is printed for the parts of the
instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal integer
that is a repeat count for the format character. While stepping through
a format dot is incremented temporarily by the amount given for each
format letter. If no format is given then the last format is used. The
format letters available are as follows:

o 2 Prints 2 bytes in octal. All octal numbers output by
adb are preceded by O.

o 4 Prints 4 bytes in octal.
q 2 Prints in signed octal.
Q 4 Prints long signed octal.

October 10, 1988 Page 3

ADB (CP) ADB (CP)

d 2
D4
x 2
X4
u 2
U4
f 4
F 8
b 1
c 1
C 1

s n

S n

Y4
i n

a 0

AO
P 2

t 0

r 0
n 0 " ... " °
+

Prints in decimal.
Prints long decimal.
Prints 2 bytes in hexadecimal.
Prints 4 bytes in hexadecimal.
Prints as an unsigned decimal number.
Prints long unsigned decimal.
Prints the 32 bit value as a floating point number.
Prints double floating point.
Prints the addressed byte in octal.
Prints the addressed character.
Prints the addressed character using the following
escape convention. Character values 000 to 040 are
printed as an at-sign (@) followed by the correspond­
ing character in the octal range 0100 to 0140. The at­
sign character itself is printed as @@.
Prints the addressed characters until a zero character is
reached.
Prints a string using the at-sign (@) escape conven­
tion. Here n is the length of the string including its
zero terminator.
Prints 4 bytes in date format (see ctime (S».
Prints as machine instructions. n is the number of
bytes occupied by the instruction. This style of print­
ing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.
Prints the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type
as indicated below.

/ local or global data symbol
? local or global text symbol

local or global absolute symbol
Prints the value of dot in absolute form.
Prints the addressed value in symbolic form using the
same rules for symbol lookup as a.
When preceded by an integer, tabs to the next
appropriate tab stop. For example, 8t moves to the
next 8-space tab stop.
Prints a space.
Prints a newline.
Prints the enclosed string.
Decrements dot by the current increment. Nothing is
printed.
Increments dot by 1. Nothing is printed.
Decrements dot by 1. Nothing is printed.

newline

Page 4

If the previous command temporarily incremented dot, makes the
increment permanent. Repeat the previous command with a count
of 1.

October 10, 1988

ADB (CP) ADB (CP)

[? 1]1 value mask
Words starting at dot are masked with mask and compared with
value until a match is found. If L is used then the match is for
4 bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

[?/]w value ...
Writes the 2-byte value into the addressed location. If the com­
mand is W, writes 4 bytes. Odd addresses are not allowed when
writing to the subprocess address space.

[?/]m segnumfpos size
Sets new values for the given segment's file position and size. If
size is not given, then only the file position is changed. The seg­
num must the segment number of a segment already in the memory
map (see Addresses). If? is given, a text segment is affected; if 1 a
data segment.

[?/]M segnumfpos size
Creates a new segment in the memory map. The segment is given
file position fpos and physical size size . The segnum must not
already exist in the memory map. If? is given, a text segment is
created; if 1 a data segment.

>name
dot is assigned to the variable or register named.

A shell is called to read the rest of the line following'!'.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by ip.

Dot is set to ip.
f Print the floating registers in single or double length.
b Print all breakpoints and their associated counts and com­

mands.
c C stack backtrace. If address is given then it is taken as the

address of the current frame (instead of bp). If C 1S used then
the names and (16 bit) values of all automatic and static vari­
ables are printed for each active function. If count is given
then only the first count frames are printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o Sets input and output default format to octal.
d Sets input and output default format to decimal.

October 10, 1988 Page 5

ADB (CP) ADB (CP)

x Sets input and output default format to hexadecimal.
q Exit from adb.
v Print all non zero variables in octal.
m Print the address map.

:nlo(hjier
Manage a subprocess. Available modifiers are:

brc
Set breakpoint at address. The breakpoint is executed count-l
times before causing a stop. Each time the breakpoint is
encountered the command c is executed. If this command sets
dot to zero then the breakpoint causes a stop.

dl Delete breakpoint at address.

r [arguments]
Run obJfil as a subprocess. If address is given explicitly then
the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. arguments to the
subprocess may be supplied on the same line as the command.
An argument starting with < or > causes the standard input or
output to be established for the command. All signals are
turned on on entry to the subprocess.

R [arguments]

cos

Same as the r command except that arguments are passed
through a shell before being passed to to the program. This
means shell metacharacters can be used in filenames.

The subprocess is continued and signal s is passed to it, see
signal (S). If address is given then the subprocess is continued
at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is
the same as for r.

ss As for co except that the subprocess is single stepped count
times. If there is no current subprocess then obJfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

Variables

adb provides a number of variables. Named variables are set initially
by adb but are not used subsequently. Numbered variables are
reserved for communication as follows.

Page 6 October 10, 1988

ADB (CP)

° The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

ADB (CP)

On entry the following are set from the system header in the corefile.
If corefile does not appear to be a core file then these values are set
from ob jfil :

b The base address of the data segment.
d The data segment size.
e The entry point.
m The execution type.
n The number of segments.
s The stack segment size.
t The text segment size.

Addresses

Addresses in adb refer to either a location in a file or in actual
memory. When there is no current process in memory, adb addresses
are computed as file locations, and requested text and data are read
from the objfil and corefile files. When there is a process, such as after
a :r command, addresses are computed as actual memory locations.

All text and data segments in a program have associated memory map
entries. Each entry has a unique segment number. In addition, each
entry has the file position of that segment's first byte, and the physical
size of the segment in the file. When a process is running, a segment's
entry has a virtual size which defines the size of the segment in
memory at the current time. This size can change during execution.

When a address is given and no process is running, the file location
corresponding to the address is calculated as:

effective- file-address = file-position + offset

If a process is running, the memory location is simply the offset in the
given segment. These addresses are valid if and only if

° <= offset <= size

where size is physical size for file locations and virtual size for
memory locations. Otherwise, the requested address is not legal.

The initial setting of both mappings is suitable for normal a.out and
core files. If either file is not of the kind expected then, for that file,
file position is set to 0, and size is set to the maximum file size. In this
way, the whole file can be examined with no address translation.

October 10, 1988 Page 7

ADB (CP) ADB (CP)

So that adb may be used on large files, all appropriate values are kept
as signed 32 bit integers.

Files

a.out
core

See Also

ptrace(S), a.out(F), core(F)

Diagnostics

The message "adb" appears when there is no current command or for­
mat.

Comments about inaccessible files, syntax errors, abnormal term ina -
tion of commands, etc.

Exit status is 0, unless last command failed or returned nonzero status.

Notes

A breakpoint set at the entry point is not effective on initial entry to
the program.

System calls cannot be single stepped.

Local variables whose names are the same as an external variable may
foul up the accessing of the external.

COFF files are accepted and read transparently.

Page 8 October 10, 1988

AR (CP) AR (CP)

Name

ar - Maintains archives and libraries.

Syntax

ar key [posname] afile names ...

Description

ar maintains groups of files combined into a single XENIX format
archive file. Its main use is to create and update library files as used
by the link editor though it can be used for any similar purpose.

key is one character from the set drqtpmx, optionally concatenated
with one or more of vuaibcln. afUe is the archive file. The names are
constituent files in the archive file. These files can be any combina­
tion of XENIX format object files or COFF files. The posname is the
name of a constituent file, and is required when certain keys are used.
The meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional charac­
ter u is used with r, then only those files with modified dates later
than the archive files are replaced. If an optional positioning char­
acter from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the archive.
D seful only to avoid quadratic behavior when creating a large
archive piece by piece.

t Prints a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

October 10, 1988 Page 1

AR (CP) AR (CP)

x Extracts the named files. If no names are given, all files in the
archive are extracted. Unless the optional character n is used with
x, an extracted file's modification date will be set to the date stored
in that file's archive header. In neither case does x alter the
archive file.

v Verbose. Under the verbose option, ar gives a file-by-file descrip­
tion of the making of a new archive file from the old archive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with x, it precedes each
file with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the nOimal message that is produced when afile
is created.

Local. Normally ar places its temporary files in the directory
Itmp. This option causes them to be placed in the local directory.

n New. When used with the key character x it sets the extracted file's
modification date to the current date.

When ar creates an archive, it always creates the header'in XENIX
format (see ar(F».

Files

/tmp/v* Temporary files

See Also

Id(CP), 10rder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put in
the archive twice.

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause ld to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader ld warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

Page 2 October 10, 1988

ASX (CP) ASX (CP)

Name

asx - XENIX 8086/186/286 assembler.

Syntax

asx [options] source-file

Description

asx assembles 8086/186/286 assembly language source files and pro­
duces linkable object modllJes. Note that masm(CP) is the supported
XENIX assembler and shoulrl be used instead of asx for new develop­
ment.

asx accepts one source-file. The source file name must have the" .s"
extension. The resulting file containing the object module is given the
same base name as the source, with the ".0" extension replacing the
".s" extension.

There are the following options:

-a Assembled segments are output in alphabetic order, instead of
in order of occurrence in the source file.

-d Creates program listings for both passes of the assembler. This
listing can be used to resolve phase errors between assembler
passes. The -d option is ignored if the -I option is not in effect.

-I Produces a listing file. The listing file has the same base name
as the source file, but has the" .1st" extension.

-Mu Disables case sensitivity for all names and symbols. This option
makes upper and lowercase letters in names and symbols indis­
tinguishable to the assembler. This option also causes the sym­
bols defined by the EXTRN and PUBLIC directives to be output
in uppercase regardless of their original spelling.

-Mx Disables case sensitivity for all names and symbols except those
names defined by the EXTRN and PUBLIC directives. This
option is similar to the -Mu option except that public and exter­
nal names copied to the object file retain their original spelling.

-n Suppresses the generation of the symbol table in the program
listing. This option is ignored if the -I option is not in effect.

-0 filename
Directs the generated object module to the file named filename.
No default extension is assumed.

October 10, 1988 Page 1

ASX(CP) ASX(CP)

-0 Causes values in the program listing to be displayed in octal.
The default radix is hexadecimal.

-r Causes generation of actual 8087/287 instructions instead of
software interrupts for the floating point emulation package.
Object modules created using this option can only be executed
on machines with an 8087 or 287.

-x Directs thc assembler to list any conditional block whose IF
condition resolves to false. This option can be overridden in the
source file by using the .TFCOND directive. This option is
ignored if the -I option is not in effect.

By default, asx recognizes 8086 instruction mnemonics only. To
assemble 186, 286, 8087, or 287 instructions, the corresponding .186,
.286c, .286p, .8087, or .287 directive must be given in the source file.

Files

/bin/asx

See Also

ld(CP)

Note

Unless the -r is given, asx assumes all 8087/287 instructions are to be
carried out using floating point emulation. The -r option should only
be used on machines with an 8087 or 287 coprocessor.

asx (CP) is also known as the Ritchie assembler. It was used before
the introduction of the cmerge C compiler and is not compatible with
cc (CP). Use [d(CP) to link object modules created with asx.

Page 2 October 10, 1988

CB (CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

cb [-s J [-j J [-lleng J [file ... J

Description

cb places a copy of the C program inJile (standard input, ifJile is not
given) on the standard output with spacing and indentation that
displays the structure of the program. Under default options, cb
preserves all user newlines. The -s option formats the code to match
the style of Kernighan and Ritchie in The C Programming Language.
The -j option causes split lines to be put back together. The -I option
causes cb to split lines that are longer than [eng.

See Also

cc(CP)

B.W. Kernighan and D.M. Ritchie, The C Programming Language
(Englewood Cliffs: Prentice-Hall, 1978)

Notes

Punctuation that is hidden In preprocessor statements will cause
indentation errors.

October 10, 1988 Page 1

cc (CP) cc (CP)

Name

cc - Invokes the C compiler.

Syntax

cc [option ...] filename ...

Description

cc is the XENIX C compiler command. It creates executable programs
by compiling and linking the files named by the filename arguments.
cc copies the resulting program to the file a.out.

The filename can name any C or assembly language source file or any
object or library file. C source files must have a .c filename exten­
sion. Assembly language source files must have .s, object files .0, and
library files .a extensions. cc invokes the C compiler for each C
source file and copies the result to an object file whose basename is
the same as the source file but whose extension is .0. cc invokes the
XENIX assembler, masm ,for each assembly source file and copies the
result to an object file with extension .0. cc ignores object and library
files until all source files have been compiled or assembled. It then
invokes the XENIX link editor, ld , and combines all the object files it
has created together with object files and libraries given in the com­
mand line to form a single program.

Files are processed in the order they are encountered in the command
line, so the order of files is important. Library files are examined only
if functions referenced in previous files have not yet been defined.
Library files must be in ranlib (CP) format, that is, the first member
must be named __ .SYMDEF, which is a dictionary for the library.
Only those functions that define unresolved references are con­
catenated. A number of "standard" libraries are searched automati­
cally. These libraries support the standard C library functions and
program startup routines. Which libraries are used depends on the
program's memory model (see "Memory Models" below). The entry
point of the resulting program is set to the beginning of the standard
startup code which then calls the "main()" function of the program.

There are the following options:

-c
Creates a linkable object file for each source file but does not link
these files. No executable program is created.

-c Preserves comments when preprocessing a file with -E , -P , or -
EP. That is, comments are not removed from the preprocessed
source. This option may only be used in conjunction with -E , -P ,
or -EP.

October 10, 1988 Page 1

cc (CP) cc (CP)

-eompat
Makes an executable file that is binary compatible across the fol­
lowing systems (as distributed by certain vendors):

XENIX-286 System V
XENIX-386 System V
XENIX-2863.0
XENIX-8086 System V

-CSON, -CSOFF
When optimization (-0) is also specified, these options enable or
disable "common sub-expression" optimization.

-d Displays the various passes and their arguments before they are
executed.

-Dname[= string]
Defines name to the preprocessor as if defined by #define in each
source file. The form "-Dname" sets name to 1. The form "­
Dname=string" sets name to the given string.

-dos
Directs ee to create an executable program for MS-DOS systems.

-E Preprocesses each source file as described for -P, but copies the
result to the standard output. The option also places a #line direc­
tive with the current input line number and source file name at the
beginning of output for each file.

-EP
Preprocesses each source file as described for -E, but does not
place a #line directive at the beginning of the file.

-Fnum
Sets the size of the program stack to num bytes. The value of num
must be given in hexadecimal. The default stack for the 8086 is
variable, starting at the top of a full 64 Kbyte data segment that
grows down until it reaches data. The default stack for the 80286
is 1000 bytes (hexadecimal). This option does not apply to the
80386, which has a variable stack.

-Fa, -Faname
Create an assembly source listing in source.s or the named file.
Continues with the link if requested.

-Fe, -Fcname
Create a merged assembler and C listing in source.L or in the
named file.

-Fename
Names the executable program file name.

Page 2 October 10, 1988

cc (CP) cc (CP)

-FI, -Flname
Create a listing file in source.L (or the named file) with assembly
source and object code. Continues with the link if requested.

-Fm, -Fmname
Instruct the linker to create a map listing in a file called a.map (or
the named file). This file contains the names of all segments in
order of their appearance in the load module.

-Foname
The object filename will be name instead of source.o.

-FPa, -FPc, -FPc87, -FPi, -FPi87
When used in conjunction with -dos these options control the type
of floating point code generated and which library support to use.
The default is -FPi. For more information see Appendix A,
"XENIX to DOS: A Cross Development System" ,of the XENIX C
Library Guide.

-Fs, -Fsname

-g

Creates a C source listing in source.S or the named file.

Includes information for the symbolic debugger. (This is
equivalent to the -Zi option.)

-Hnum
Sets the maximum length of external symbols to num. This option
is equivalent to the -nl option.

-help
Prints help menu.

-HELP

-i

Same as -help.

Creates separate instruction and data spaces for small model pro­
grams. When the output file is executed, the program text and data
areas are allocated separate physical segments. The text portion
will be read-only and may be shared by all users executing the file.
This option is implied when creating middle or large model pro­
grams. (Not implemented on all machines.)

-Ipathname
Adds pathname to the list of directories to be searched when an
#include file is not found in the directory containing the current
source file or whenever angle brackets « » enclose the filename.
If the file cannot be found in directories in this list, directories in a
standard list are searched.

October 10,1988 Page 3

cc (CP) cc (CP)

-K Removes stack probes from a program. Stack probes are used to
detect stack overflow on entry to program routines. Code
generated for the 80386 processor does not require stack probes,
therefore this option has no effect if -M3 is specified.

-lname
Searches library name for unresolved function references.

-L Creates an assembler listing file containing assembled code and
assembly source instructions. The listing is made in a file whose
basename is the same as the source but whose extension is .L.
This option suppresses the -S option.

-LARGE
Invokes the large model passes of the compiler (executable on 286
and 386 processors only). Using large model passes is advised
when "Out of heap space" errors are encountered.

-link
Lets the user specify linker switches at compile time that are not
directly supported by the driver. This option must be specified last
on the cc command line. All text (options and filenames) that fol­
lows this option is passed directly to the Id linker. (Note that all
options not recognized by the compiler are passed to the linker.)

-m name
Creates a map file called name. This option is equivalent to the
-Fm option.

-M string

Page 4

Sets the program configuration. This configuration defines the
program's memory model, word order, and data threshold. It also
enables C language enhancements such as advanced instruction set
and keywords. Note that the number specifying the CPU type (0, 1,
2, or 3) must be given before the letter specifying the size model of
the program. For example, to compile the program to be large
model 286, the flag should be constructed as follows:

-M21

The string may be any combination of the following ("s", "m",
"1", and "h" are mutually exclusive):

a
c

s
m

Restricts the language to ansi specifications.
Creates a compact model program.
For 286 compilations only.
Creates a small model program (default).
Creates a middle model program.
For 286 compilations only.

October 10, 1988

CC(CP) CC(CP)

Creates a large model program.
For 286 compilations only.

h Creates a huge model program.
e Enables the far, near, huge, pascal, and fortran key­

words. Also enables certain non-ANSI extensions
necessary to ensure compatibility with existing ver­
sions of he C compiler (this applies only to versions
of the C compiler that support ANSI C).

o Enables 8086 code generation. The "s", "m", and
"1" specifiers are valid here.
Enables 186 code generation. The "s", "m", and
"1" specifiers are valid here.

2 Enables 2e6 code generation for compiled C source
files. The "s", "m", and "1" specifiers are valid
here.

3 Enables 386 code generation. The "s", "m", and
"1" specifiers are invalid here.

b Reverses the word order for long types. High order
word is first. Default is low order word first.

t num Sets the threshold for the size of the largest data
item in the data group to num. Default is 32,767.
This option can only be used in large model pro­
grams.

d Instructs the compiler not to assume register SS=DS.
f Enables software floating point that does not exist in

XENIX. Useful when compiling object files to be
linked on MS-DOS.

-n Sets pure text model. This option is equivalent to the -i option.
Gives a warning that it is setting -i when used.

-ND name
Sets the data segment name for each compiled or assembled source
file to name. If -ND is not given, the name "_DATA" is used.

In large model programs (-MI) the -ND option can only be used on
"leaf modules" - those that make no calls to routines in another
segment.

-nl num
Sets the maximum length of external symbols to num. Names
longer than num are truncated before being copied to the external
symbol table.

-NMname
Sets the module name for each compiled or assembled source file
to name. If not given, the filename of each source file is used.

-NT name
Sets the text segment name for each compiled or assembled source
file to name. If not given, the name "module_TEXT" is used for

October 10, 1988 Page 5

cc (CP) cc (CP)

middle model and " TEXT" for small model programs. This
option should not be used on 386 code.

-ofilename
Defines filename to be the name of the final executable program.
This option overrides the default name a.out. Filename can not end
in.o or .c.

-0 string

-p

Invokes the object code optimizer. The string consists of one or
more of the following characters:

d Disables optimization completely.
a Relaxes alias checking.
s Optimizes code for space.
t Default. Optimizes code for speed. Equivalent to -0.
x Performs maximum optimization. Equivalent to -Oactl.
c Eliminates common expressions. (386 only)
I Performs various loop optimizations. (386 only)
p Precision optimization.

Adds code for program profiling. Profiling code counts the number
of calls to each routine in the program and copies this information
to the mOD.out file. This file can be examined using the proj(CP)
command.

-p Preprocesses each source file and copies the result to a file whose
basename is the same as the source but whose extension is .i.

-pack
Packs structures. Each structure member is stored at the first avail­
able byte, without regard to int boundaries. Although this will
save space, execution will be slower because of the extra time
required to access 16 bit members that begin on odd boundaries.

-r Invokes the incremental linker, llib/ldr ,for the link step.

-s Instructs the linker to strip the symbol table information from the

-8

executable output file.

Creates an assembly source listing in a file whose basename is the
same as the source but whose extension is .s. It should be noted
that this file is not suitable for assembly. This option provides
code for reading only.

-8EGnum

Page 6

Sets the maximum number of segments that the linker can handle
to num, which can range from 1 to 1024. If 1024 is too small, use
the -NT option to reduce the number of different segment names.

October 10, 1988

cc (CP) cc (CP)

-u Eliminates all manifest defines. Also see -U.

-U definition
Removes or undefines the given manifest define. The manifest
defines are as follows:

-Vnum

M_186
M_XENIX
M_SYS3 or M_SYSII1
M_SYS5 or M_SYSV
M_B1TFIELDS
M_WORDSWAP
M_SDATAorM_LDATA
M_STEXT or M_LTEXT
M 18086 or M I186 or M 1286 or M 1386
M:=186SM or M_186MM Or M_186LM

Specifies which version of XENIX the file is being compiled for.
Num can be one of three values: 2, 3, or 5. This option also deter­
mines the name sent to the preprocessor to indicate the target
XENIX system. The defined names for each version are:

-V2 M_ V7 is defined
-V3 M_SYS3 is defined
-V5 Both M_SYS3 and M_SYS5 are defined

If the -V option is not specified, the default is -VS. Any value
other than 2, 3, or 5 will cause a fatal error.

-w Prevents compiler warning messages from being issued. Same as
"-W 0".

-Wnum
Sets the output level for compiler warning messages. If num is 0,
no warning messages are issued. If 1, only warnings about pro­
gram structure and overt type mismatches are issued. If 2, warn­
ings about strong typing mismatches are issued. If 3, warnings for
all automatic conversions are issued. This option does not affect
compiler error message output.

-X Removes the standard directories from the list of directories to be
searched for #include files.

-z Displays the various passes and their arguments but does not exe­
cute them.

-Za
Restricts the language to ansi specifications. This option is
equivalent to the -Ma option.

October 10, 1988 Page 7

cc (CP) cc (CP)

-Zd
Includes line number information in the object file.

-Ze
Enables the far, near, huge, pascal, and fortran keywords. This
option is equivalent to the -Me option.

-Zg

-Zi

-ZI

Generates function declarations from function definitions and
writes declarations to standard output-omits p2, p3, and ld.

Includes information used by the symbolic debugger (sdb) in the
output file. (This is equivalent to the -g option.)

Removes default library information from the object file.

-Zpn

-Zs

Packs structure members in memory. Allocates alignment to 1 (for
8086 processors). The n argument can be 1, 2, or 4, where

1 allocates alignment to 1.

2 allocates alignment to 2 (default for 80286 programs).

4 allocates alignment to 4 (default for 80386 programs).

Performs syntax check only-omits calling p2, p3, and Id386.

Many options (or equivalent forms of these options) are passed to the
link editor as the last phase of compilation. The -M option with the
"s" , "m" , and "I" configuration options are passed to specify
memory requirements. The -i, -F, and -p are passed to specify other
characteristics of the final program.

The -D and -I options may be used several times on the command line.
The -D option must not define the same name twice. These options
affect subsequent source files only.

Memory Models

cc can create programs for five different memory models: small, mid­
dle, compact, large, and huge. In addition, small model programs can
be pure or impure. On the 8086 and 80286 processors, these various
segmentation models allow programs with code or data larger than
64K bytes. Since the 80386 can address segments larger than 64K
bytes, the middle, large and huge models are not supported on the
80386.

Page 8 October 10, 1988

cc (CP) cc (CP)

Impure-Text Small Model
These programs occupy one 64K byte physical segment in which
both text and data are combined. cc creates impure small model
programs by default. They can also be created using the -Ms
option.

Pure-Text Small Model
These programs occupy two 64K byte physical segments. Text and
data are in separate segments. The text is read-only and may be
shared by several processes at once. The maximum program size
is 128 Kbytes. Pure small model programs are created using the -i
and -Ms options.

Middle Model
These programs occupy several physical segments, but only one
segment contains data. Text is divided among as many segments
as required. Special calls and returns are used to access functions
in other segments. Text can be any size. Data must not exceed 64K
bytes. Middle models programs are created using the -Mm option.
These programs are always pure.

Compact Model
This model of program has a maximum of 64K of text, but multiple
segments of data. Data can be any size, but text must not exceed
64K. Compact model programs are created with the -Me option.

Large Model
These programs occupy several physical segments with both text
and data in as many segments as required. Special calls and returns
are used to access functions in other segments. Special addresses
are used to access data in other segments. Text and data may be
any size, but no data item may be larger than 64K bytes. Large
model programs are created using the -Ml option. These programs
are always pure.

Huge Model
These programs occupy several physical segments with both text
and data in as many segments as required. It is possible to allow a
data construct that spans 64K byte segments. This implementation
imposes limits on the way the data construct is put together and
where it is located in memory. Huge model programs are created
using the -Mh option. These programs are always pure.

Small, middle, large and huge model object files can only be linked
with object and library files of the same model. It is not possible to
combine small, medium, large, and huge model object files in one exe­
cutable program. cc automatically selects the correct small, middle,
large, or huge versions of the standard libraries based on the
configuration option. It is up to users to make sure that all of their
own object files and private libraries are properly compiled in the
appropriate model.

October 10, 1988 Page 9

cc (CP) cc (CP)

The special calls and returns used in middle, large, and huge model
programs may affect execution time. In particular, the execution time
of a program which makes heavy use of functions and function
pointers may differ noticeably from small model programs.

In middle, large, and huge model programs, function pointers are 32
bits long. In large and huge model programs, data pointers are 32 bits
long. Programs making use of such pointers must be written carefully
to avoid incorrect declaration and use of these variables.

The -NM, -NT, and -ND options may be used with middle, large, and
huge model programs to direct the text and data of specific object files
to named physical segments. All text having the same text segment
name is placed in a single physical segment. Similarly, all data hav­
ing the same data segment name is placed in a single physical seg­
ment.

cc reads lete/default/ee to obtain information about default options
and libraries. The default file may contain lines beginning with the
following patterns:

FLAGS=

and

LIBS=

Any parameters following the FLAGS= pattern are treated by cc as if
they had been specified at the start of the cc command line. Parame­
ters following the LIBS= pattern are treated as if they had been
specified at the end of the command line. This option is intended for,
but not restricted to, the specification of additional libraries. cc
always searches for a file in lete/default that matches the last com­
ponent of the pathname by which cc was invoked. Thus by linking cc
to several different names and invoking it by those names, different
defaults can be selected.

An example lete/default/ee file follows:

FLAGS= -LARGE -M2e

LIBS= -Ix

This invokes the large model versions of the compiler passes to gen­
erate 286 code with far and near keywords enabled, and includes
libx.a on all links.

Files

/bin/cc Driver

Page 10 October 10, 1988

cc (CP)

/lib/pO, pI, p2, p3
/lib/plL, p2L, p3L
/lib/*.a
/etc/default/cc

See Also

Small model passes
Large model passes
Standard libraries
Default options and libraries

ar(CP), Id(CP), lint(CP), machine(M), masm(CP), ranlib(CP)

cc (CP)

XENIX C User's Guide, C Library Guide, and C Language Reference

Notes

Error messages are produced by the program that detects the error.
These messages are usually produced by the C compiler, but may
occasionally be produced by the assembler or the link loader.

All object module libraries must have a current ranlib directory. The
user must make sure that the most recent library versions have been
processed with ranlib(CP) before linking. If this is not done, ld can­
not create executable programs using these libraries.

October 10, 1988 Page 11

CDC (CP) CDC (CP)

Name

cdc - Changes the delta commentary of an sees delta.

Syntax

cdc -rSID [-m[mrlist]] [-y[comment]] files

Description

cdc changes the delta commentary for the SID specified by the -r
option, of each named sees file.

delta commentary is defined to be the Modification Request (MR) and
comment information normally specified via the delta (CP) command
(-m and -y options).

If a directory is named, cdc behaves as though each file in the direc­
tory were specified as a named file, except that nonsees files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is
read (see Warning); each line of the standard input is taken to be the
name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

-rSID

-m[mrlist]

October 10, 1988

Used to specify the sces IDentification
(SID) string of a delta for which the delta
commentary is to be changed.

If the sees file has the v flag set (see
admin(CP» then a list of MR numbers to be
added and/or deleted in the delta commentary
of the SID specified by the -r option may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the
same manner as that of delta (CP). In order to
delete an MR, precede the MR number with
the character! (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a ' 'comment' ,
line. A list of all deleted MRs is placed in the
comment section of the delta commentary
and preceded by a comment line stating that
they were deleted.

Page 1

CDC (CP) CDC (CP)

-y[comment]

If -m is not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see
-yoption).

MRs in a list are separated by blanks and/or
tab characters. An unescaped newline char­
acter terminates the MR list.

Note that if the v flag has a value (see
admin(CP)), it is taken to be the name of a
program (or shell procedure) which validates
the correctness of the MR numbers. If a
nonzero exit status is returned from the MR
number validation program, cdc terminates
and the delta commentary remains
unchanged.

Arbitrary text used to replace the comment(s)
already existing for the delta specified by the
-r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

If -y is not specified and the standard input is
a terminal, the prompt "comments?" is
issued on the standard output before the stan­
dard input is read; if the standard input is not
a terminal, no prompt is issued. An unes­
caped newline character terminates the com­
ment text.

In general, if you made the delta, you can change its delta com­
mentary; or if you own the file and directory you can modify the
delta commentary.

Examples

The following:

cdc -r1.6 -m"b178-12345 !b177-54321 b179-00001" -ytrouble
s.file

adds b178-12345 and b179-00001 to the MR list, removes b177-54321
from the MR list, and adds the comment trouble to delta 1.6 of s.file.

Page 2 October 10, 1988

CDC (CP)

The following interactive sequence does the same thing.
cdc -r1.6 s.file

Warning

MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

CDC (CP)

If sees file names are supplied to the cdc command via the standard
input (- on the command line), then the -m and -y options must also be
used.

Files

x-file See delta (CP)

z-file See delta (CP)

See Also

admin(CP), delta(CP), get(CP), help(C), prs(CP), sccsfile(F)

Diagnostics

Use he/p(C) for explanations.

October 10, 1988 Page 3

CFLOW(CP) CFLOW(CP)

Name

cflow - Generates C flow graph.

Syntax

cflow [-r] [-ix] [-i_] [-dnum] file ...

Description

cflow analyzes a collection of C, YACC, LEX, assembler, and object
files and attempts to build a graph charting the external references.
Files ending in .y, .1, .c, and.i are run through YACC, LEX, and the C­
preprocessor (bypassed for .i files) as appropriate, and then through
the first pass of lint (CP). (The -I, -D, and -U options of the C­
preprocessor are also understood.) Files suffixed with .s are assem­
bled and information is extracted (as in .0 files) from the symbol table.
The results of this processing are collected and turned into a graph of
external references. This graph is displayed on the standard output.

Each line of output begins with a line number, followed by a suitable
number of tabs indicating the level, the name of the global procedure,
a colon, and the definition. A global procedure is normally a function
not defined as an external and not beginning with an underscore char­
acter (see the -i option on the next page). For information extracted
from C source files, the definition includes an abstract type declara­
tion (for example, char *), and, enclosed by angle brackets, the name
of the source file and the line number where the definition was found.
Definitions extracted from object files indicate the filename and loca­
tion counter under which the symbol appeared (for example, text).
Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to
that name contain only the number of the line where the definition can
be found. For undefined references, only < > is printed.

As an example, given the following inJile.c:

int i' ,

mainO
{

fO;
gO;
fO;

fO
{

i=hO;

October 10, 1988 Page 1

CFLOW(CP) CFLOW(CP)

the command:

cflow -ix file.c

produces the following C flow graph:

1 main: intO, <file.c 4>
2 f: intO, <file.c 11>
3 h:<>
4 i: int, <file.c 1>
5 g:<>

When the nesting level becomes too deep, the -e option of pr(C) can
be used to compress the tab expansion to something less than every
eight spaces.

The following options are interpreted by cflow :

-r Reverses the "caller:callee " relationship producing an
inverted listing showing the callers of each function. The list­
ing is also sorted in lexicographical order by callee.

-ix Includes external and static data symbols. The default is to
include only functions in the flow graph.

-i Includes names that begin with an underscore. The default is
to exclude these functions (and data if -ix is used).

-dnum Indicates the depth (num decimal integer) at which the flow
graph is cut off. By default this is a very large number. You
can not set the cutoff depth to a nonpositive integer.

See Also

cc(CP), lex(CP), lint(CP), masm(CP), nm(CP), pr(C), yacc(CP)

Diagnostics

Complains about bad options. Complains about multiple definitions
and only believes the first. Other messages may come from the vari-
0us programs used (for example, the C-preprocessor).

Notes

Files produced by lex(CP) and yacc (CP) cause the reordering of line
number declarations which can confuse cflow. To get proper results,
use yacc or lex input for cflow.

Page 2 October 10, 1988

COMB (CP) COMB (CP)

Name

comb - Combines sees deltas.

Syntax

comb [-0] [-8] [-psid] [-clist] files

Description

comb provides the means to combine one or more deltas in an sees
file and make a single new delta. The new delta replaces the previous
deltas, making the sees file smaller than the original.

comb does not perform the combination itself. Instead, it generates a
shell procedure that you must save and execute to reconstruct the
given sees files. comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the output
to a file. The saved file can then be executed like any other shell pro­
cedure (see sh(C».

When invoking comb, arguments may be specified in any order. All
options apply to all named sees files. If a directory is named, comb
behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the pathname does
not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input
is taken to be the name of an sees file to be processed; non-sees
files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

-pSID The sees IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon­
structed file.

-elist A list (see get(CP) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get -e generated, this argument causes the recon­
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the -0 option may
decrease the size of the reconstructed sees file. It may also
alter the shape of the delta tree of the original file.

October 10, 1988 Page 1

COMB (CP) COMB (CP)

-s This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original

Before any sees files are actually combined, you should use this
option to determine exactly how much space is saved by the combin­
ing process.

If no options are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

See Also

admin(CP), delta(CP), get(CP), help(C), prs(CP), sccsfile(F)

Diagnostics

Use he/p(C) for explanations.

Notes

comb may rearrange the shape of the tree of deltas. It may not save
any space; in fact, it is possible for the reconstructed file to be larger
than the original.

Page 2 October 10, 1988

cpp (CP) cpp (CP)

Name

cpp - The C language preprocessor.

Syntax

/lib/cpp [option ...] [ifile [ofile]]

Description

cpp is the C language preprocessor which is invoked as the first pass
of any C compilation using the cc (CP) command. Thus the output of
cpp is designed to be in a form acceptable as input to the next pass of
the C compiler. As the C language evolves, the use of cpp other than
in this framework is not suggested. The preferred way to invoke cpp
is through the cc (CP) command. See m4 (CP) for a general macro pro­
cessor.

cpp optionally accepts two file names as arguments. ffUe and ofile
are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control informa­
tion used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is
specified, all comments (except those found on cpp directive lines)
are passed along.

-Uname
Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor.

-Dname
-Dname= def

Define name as if by a #define directive. If no =def is given,
name is defined as 1.

-Idir
Change the algorithm for searching for #include files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #include files whose names are
enclosed in "" are searched for first in the directory of the ifile
argument, then in directories named in -I options, and last in direc­
tories on a standard list. For #include files whose names are
enclosed in <>, the directory of the ifile argument is not searched.

October 10, 1988 Page 1

cpp (CP) cpp (CP)

Two special names are understood by cpp. The name LINE is
defined as the current line number (as a decimal integer)as knownby
cpp, and FILE is defined as the current file name (as a C string)
as known-by cpp~They can be used anywhere (including in macros)
just as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, .•• , arg) token-string
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a list of
comma separated tokens, and a) by token-string where each
occurrence of an arg in the token-string is replaced by the
corresponding token in the comma separated list.

#Undef name
Cause the definition of name (if any) to be forgotten from now on.

#include ''filename''
#include <filename>

Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used, filename
is searched for in the standard places only. See the -I option above
for more detail.

#Iine integer-constant ''filename''
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next
line and filename is the file where it comes from. If' 'filename" is
not given, the current file name is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifnder). Each test directive must have a matching #endif.

#ifdef name
The following lines appear in the output if name has been the sub­
ject of a previous #define without being the subject of an interven­
ing #Undef.

#ifndef name
The following lines will not appear in the output if name has been
the subject of a previous #define without being the subject of an
intervening #Undef.

#if defined identifier

Page 2

May be used in place of the #if directive. If the identifier is
defined, the directive has a value of 1, otherwise O. This is fre­
quently used for conditional environment-specific text.

October 10, 1988

cpp (CP) cpp (CP)

#elif constant-expression
Allows for the conditional compilation of portions of the text. The
constant-expression is evaluated and if it is not zero, the text
immediately following (until the next elif, else, endif) is passed to
the compiler.

#if constant-expression
The following lines appear in the output if constant-expression
evaluates to non-zero. All binary non-assignment C operators, the
?: operator, the unary -, !, and - operators are all legal in
constant-expression. The precedence of the operators is the same
as defined by the C language. There is also a unary operator
defined, which can be used in constant-expression in these two
forms: defined (name) or defined name. This allows the utility
of #ifdef and #ifndef in a #if directive. Only these operators,
integer constants, and names which are known by cpp should be
used in constant-expression. In particular, the sizeof operator is
not available.

#else
Reverses the notion of the test directive which matches this direc­
tive. So if lines previous to this directive are ignored, the follow­
ing lines appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

Files

/usr/include standard directory for #include files

See Also

cc(CP), m4(CP).

Diagnostics

The error messages produced by cpp are intended to be self­
explanatory. The line number and filename where the error occurred
are printed along with the diagnostic.

Notes

When newline characters were found in argument lists for macros to
be expanded, previous versions of cpp put out the newlines as they
were found and expanded. The current version of cpp replaces these
new lines with blanks to alleviate problems that the previous versions
had when this occurred.

October 10, 1988 Page 3

CREF (CP) CREF (CP)

Name

cref - Makes a cross-reference listing.

Syntax

cref [-acilnostux123] files

Description

eref makes a cross-reference listing of assembler or C programs. The
program searches the given files for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol
2. Filename
3. Current symbol or line number
4. Text as it appears in the file

eref uses either an ignore file or an only file. If the -i option is given,
the next argument is taken to be an ignore file; if the -0 option is
given, the next argument is taken to be an only file. ignore and only
files are lists of symbols separated by newlines. All symbols in an
ignore file are ignored in columns 1 and 3 of the output. If an only file
is given, only symbols in that file will appear in column 1. Only one
of these options may be given; the default setting is -i using the
default ignore file (see FILES below). Assembler predefined symbols
or C keywords are ignored.

The -s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The -I option causes the line number
within the file to be put in column 3.

The -t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary file
/tmp/crt??). This file is created and is not removed at the end of the
process.

The eref options are:

a Uses assembler format (default)

c Uses C format

Uses an ignore file (see above)

October 10, 1988 Page 1

CREF(CP) CREF (CP)

Puts line number in column 3 (instead of current symbol)

n Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in column 3 (default)

t User-supplied temporary file

u Prints only symbols that occur exactly once

x Prints only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usrllib/cref/* Assembler specific files

See Also

as(CP), cc(CP), sort(C), xref(CP)

Notes

ere! inserts an ASCII DEL character into the intermediate file after the
eighth character of each name that is eight or more characters long in
the source file.

Page 2 October 10, 1988

CTAGS (CP) CTAGS (CP)

Name

ctags - Creates a tags file.

Syntax

ctags [-a] [-u] [-v] [-w] [-x] name ...

Description

ctags makes a tags file for vi (C) from the specified C sources. A tags
file gives the locations of specified objects (in this case functions) in a
group of files. Each line of the tags file contains the function name,
the file in which it is defined, and a scanning pattern used to find the
function definition. These are given in separate fields on the line,
separated by blanks or tabs. Using the tags file, vi can quickly find
these function definitions.

If the -x flag is given, ctags produces a list of function names, the line
number and file name on which each is defined, as well as the text of
that line and prints this on the standard output. With the -x option no
tags file is created. This is a simple index which can be printed out as
an off-line readable function index.

Files whose name ends in .c or .h are assumed to be C source files and
are searched for C routine and macro definitions.

Other options are:

-a appends output to an existing tags file.

-w Suppresses warning diagnostics.

-u Causes the specified files to be updated in tags; that is, all refer­
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in a way which is
rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one
program.

Files

tags Output tags file

October 10, 1988 Page 1

CTAGS (CP) CTAGS (CP)

See Also

exeC), vi(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with pennission.

Page 2 October 10, 1988

CXREF (CP) CXREF(CP)

Name

cxref - Generates C program cross-reference.

Syntax

cxref [options] file ...

Description

cxref analyzes a collection of C files and attempts to build a cross­
reference table. cxref uses a special version of cpp to include infor­
mation defined by #define in its symbol table. It produces a listing on
the standard output of all symbols (auto, static, and global) for each
separate file, or with the -c option for the combined files. Each sym­
bol contains an asterisk (*) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to their
interpretation by cc(CP»), the following options are interpreted by
cxref:

-c

-w<num>

-0 file

-s

-t

Files

Prints a combined cross-reference of all input files.

Formats output no wider than <num> (decimal)
columns. The default is 80 if <num> is not specified or
is less than 51.

Directs output to named file.

Operates silently; does not print input filenames.

Formats listing for 80-column width.

/usr/lib/xcpp special version of C-preprocessor.

See Also

cc(CP)

Diagnostics

Error messages are cryptic, but usually mean that you cannot compile
these files.

October 10, 1988 Page 1

CXREF(CP) CXREF(CP)

Notes

cxref considers a formal argument in a #define macro definition to be a
declaration of that symbol. For example, a program that contains
"#include ctype.h " will have many declarations of the variable c.

Page 2 October 10, 1988

DELTA (CP) DELTA (CP)

Name

delta - Makes a delta (change) to an sees file.

Syntax

delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

Description

delta is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(CP) (called the g­
file, or generated file).

delta makes a delta to each sees file named by files. If a directory is
named, delta behaves as though each file in the directory were speci­
fied as a named file, except that nonSeeS files (last component of the
pathname does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see Warn­
ing); each line of the standard input is taken to be the name of an
sees file to be processed.

delta may issue prompts on the standard output depending upon cer­
tain options specified and flags (see admin(CP)) that may be present
in the sees file (see -m and -y options below).

Options apply independently to each named file.

-rSID

-s

-n

October 10, 1988

Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is necessary
only if two or more versions of the same sees file
have been retrieved for editing (get -e) by the same
person (login name). The SID value specified with
the -r keyletter can be either the SID specified on
the get command line or the SID to be made as
reported by the get command (see get(CP)). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Page 1

DELTA (CP)

-glist

-m[mrlist]

-y[comment]

-p

Files

DELTA (CP)

Specifies a list (see get(CP) for the definition of
list) of deltas which are to be ignored when the file
is accessed at the change level (SID) created by this
delta.

If the sees file has the v flag set (see admin(CP»
then a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If -m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter­
minates the MR list.

Note that if the v flag has a value (see admin(CP»,
it is taken to be the name of a program (or shell pro­
cedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delta ter­
minates (it is assumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak­
ing the delta. A null string is considered a valid
comment.

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped newline character terminates the
comment text.

Causes delta to print (on the standard output) the
sees file differences before and after the delta is
applied. Differences are displayed in a dijf(C) for­
mat.

All files of the form ?-file are explained in Chapter 3, "SCCS: A
Source Code Control System" in the XENIX Programmer's Guide. The
naming convention for these files is also described there.

Page 2 October 10, 1988

DELTA (CP)

g-file

p-file

q-file

x-file

z-file

d-file

DELTA (CP)

Existed before the execution of delta; removed after
completion of delta.

Existed before the execution of delta; may exist after
completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
sees file after completion of delta.

Created during the execution of delta; removed during
the execution of delta.

Created during the execution of delta; removed after
completion of delta.

/usr/bin/bdiff Program to compute differences between the
"retrieved' , file and the g-file.

Warning

Lines beginning with an SOH AseII character (binary 001) cannot be
placed in the sees file unless the SOH is escaped. This character has
special meaning to sees (see sccsfile(F)) and will cause an error.

A get of many sees files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, mul­
tiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m
(if necessary) and -y options must also be present. Omission of these
options causes an error to occur.

See Also

admin(CP), bdiff(C), get(CP), help(C), prs(CP), sccsfile(F)

Diagnostics

Use help (e) for explanations.

October 10, 1988 Page 3

DOSLD (CP) DOSLD (CP)

Name

dosld - XENIX to MS-DOS cross linker

Syntax

dosld [options] file ...

Description

dosld links the object files(s) given by file to create a program for exe­
cution under MS-DOS. Although similar to Id(CP), dosld has many
options that differ significantly from ld. The options are described
below:

-D DS Allocate. This instructs dosld to perform DS allocation. It is
generally used in conjunction with the -H option.

-H Load high. This option instructs dosld to set a field in the header
of the executable file to tell MS-DOS to load the program at the
highest available position in memory. It is most often used with
programs in which data precedes code in the memory image.

-L Include line numbers. This option instructs dosld to include line
numbers in the listing file (if any). Note that dosld cannot put line
numbers in the listing file if the source translator hasn't put them in
the object file.

-M
Include public symbols. This option instructs dosld to include pub­
lic symbols in the list file. The symbols are sorted twice, lexico­
graphically and by address.

-c Ignore case. This option instructs dosld to treat upper and lower
case characters in symbol names as identical.

-Fnum
Set stack size. This option should be followed by a hexadecimal
number. dosld will use this number for the size in bytes of the
stack segment in the output file.

-Snum
Set segment limit. This option should be followed by a decimal
number between 1 and 1024. The number sets the limit on the
number of different segments that may be linked together. The
default is 128. Note that the higher the value given, the slower the
link will be.

October 10, 1988 Page 1

DOSLD (CP) DOSLD (CP)

-mfilename
Create map file. This option should be followed by a filename.
dosld will create a file with the given name in which it will put
information about the segments and groups in the executable.
Additionally, public symbols and line numbers will be listed in this
file if the -M and -L options are given.

-nl num
Set name length. This option should be followed by a decimal
number. The option instructs dosld to truncate all public and
external symbols longer than num characters.

-0 filename
Name output file. This option should be followed by a filename
which dosld will use as the name of the executable file it creates.
The default name is a.out.

-u name
Name undefined symbol. This option should be followed by a
symbol name. dosld will enter the given name into its symbol
table as an undefined symbol. The -u option may appear more than
once on the command line.

-G Ignore group associations. This option instructs dosld to ignore
any group definitions it may find in the input files. This option is
provided for compatibility with old versions of MS-LINK; gen­
erally, it should never be used.

As with ld, the files passes to dosld may be either XENIX-style
libraries (objects collected using ar(CP) and indexed using
ranlib(CP» or ordinary 8086 object files. Unless the -u option
appears, at least one of the files passed to dosld must be an ordinary
object file. Libraries are searched only after all the ordinary object
files have been processed.

Files

/usr/bin/dosld

See Also

ar(CP), as(CP), cc(CP), Id(CP), ranlib(CP)

Page 2 October 10, 1988

GET (CP) GET (CP)

Name

get - Gets a version of an sees file.

Syntax

get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e] [-l[p]] [-p]
[-m] [-n] [-s] [-b] [-g] [-t] file 000

Description

get generates an ASCII text file from each named sees file according
to the specifications given by its options, which begin with -. The
arguments may be specified in any order, but all options apply to all
named sees files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that
nonsees files (last component of the pathname does not begin with
so) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed. Again, nonSeeS files and
unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the sees filename by simply removing
the leading s.; (see also Files).

Each of the options is explained below as though only one sees file is
to be processed, but the effects of any option apply independently to
each named file.

-rSID The sees IDentification string (SID) of the version (delta)
of an sees file to be retrieved.

-ccutoJf cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file that were created after
the specified cutoff date-time are included in the generated
AseII text file. Units omitted from the date-time default to
their maximum possible values; that is, -c7502 is equivalent
to -c750228235959. Any number of nonnumeric characters
may separate the various 2 digit pieces of the cutoff date­
time. This feature allows you to specify a cutoff date in the
form: "-c77/2/2 9:22:25".

-e Indicates that the get is for the purpose of editing or making
a change (delta) to the sees file via a subsequent use of
delta (CP). The -e option used in a get for a particular ver­
sion (SID) of the sees file prevents further gets for editing

October 10, 1988 Page 1

GET (CP) GET (CP)

on the same SID until delta is executed or the j Goint edit)
flag is set in the sees file (see admin(CP». Concurrent use
of get -e for different SIDs is always allowed.

If the g-jile generated by get with an -e option is acciden­
tally ruined in the editing process, it may be regenerated by
reexecuting the get command with the -k option in place of
the -e option.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file (see admin(CP»
are enforced when the -e option is used.

-b U sed with the -e option to indicate that the new delta should
have an SID in a new branch. This option is ignored if the b
flag is not present in the file (see admin(CP)) or if the
retrieved delta is not a leaf delta. (A leaf delta is one that
has no successors on the sees file tree.)

Note: A branch delta may always be created from a nonleaf
delta.

-ilist A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following
syntax:

-xlist

-k

-l[p]

-p

Page 2

<list> ::= <range>, '<list>, <range>
<range> ::= SID SID - SID

SID, the sees Identification of a delta, may be in any fonn
described in the SCCS chapter in the XENIX Programmer's
Guide.

A list of deltas to be excluded (forced not to be applied) in
the creation of the generated file. See the -i option for the
list fonnat.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The -k option is
implied by the -e option.

Causes a delta summary to be written into an I-file. If -lp is
used then an I-file is not created; the delta summary is writ­
ten on the standard output instead. See Files for the fonnat
of the I-file.

Causes the text retrieved from the sees file to be written on
the standard output. No g-file is created. All output that
nonnally goes to the standard output goes to file descriptor
2 instead, unless the -s option is used, in which case it
disappears.

October 10, 1988

GET (CP) GET (CP)

-s Suppresses all output nonnally written on the standard out­
put. However, fatal error messages (which always go to file
descriptor 2) remain unaffected.

-m Causes each text line retrieved from the sees file to be pre­
ceded by the SID of the delta that inserted the text line in
the sees file. The fonnat is: SID, followed by a horizontal
tab, followed by the text line.

-n Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The for­
mat is: %M% value, followed by a horizontal tab, followed
by the text line. When both the -m and -n options are used,
the fonnat is: %M% value, followed by a horizontal tab,
followed by the -m option generated fonnat.

-g Suppresses the actual retrieval of text from the sees file. It
is primarily used to generate an I-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created (top) delta in a
given release (e.g., -rl), or release and level (e.g., -r1.2).

-aseq-no. The delta sequence number of the sees file delta (version)
to be retrieved (see sccsfile(F)). This option is used by the
comb(CP) command; it is not particularly useful and should
be avoided. If both the -r and -a options are specified, the -
a option is used. Care should be taken when using the -a
option in conjunction with the -e option, as the SID of the
delta to be created may not be what you expect. The-r
option can be used with the -a and -e options to control the
naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the
SID being accessed and with the number of lines retrieved from the
sees file.

If the -e option is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named,
each filename is printed (preceded by a newline) before it is pro­
cessed. If the -i option is used included deltas are listed following the
notation "Included"; if the -x option is used, excluded deltas are
listed following the notation "Excluded".

Identification Keywords

Identifying infonnation is inserted into the text retri~ved from the
sees file by replacing identification keywords with their value wher­
ever they occur. The following keywords may be used in the text
stored in an sees file:

October 10, 1988 Page 3

GET (CP)

Keyword
%M%

%1%

%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%

%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Files

GET (CP)

Value
Module name: either the value of the m flag in the file (see
admin(CP)), or if absent, the name of the sees file with the
leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MM/DD).
Current date (MM/DD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see
admin(CP)).
sees filename.
Fully qualified sees filename.
The value of the q flag in the file (see admin(CP)).
Current line number. This keyword is intended for identi­
fying messages output by the program such as "this
shouldn't have happened" type errors. It is not intended to
be used on every line to provide sequence numbers.
The 4-character string @(#) recognizable by what(C).
A shorthand notation for constructing what(C) strings for
XENIX program files. % W% = %Z% %M%<horizontal­
tab>%I%
Another shorthand notation for constructing what(C)
strings for nonXENIX program files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known
generically as the g-file, I-file, p-file, and z-file. The letter before the
hyphen is called the tag. An auxiliary filename is fonned from the
sees filename: the last component of all sees filenames must be of
the fonn s.module-name, the auxiliary files are named by replacing the
leading s with the tag. The g-file is an exception to this scheme: the
g-file is named by removing the s. prefix. For example, s.xyz.c, the
auxiliary filenames would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the -p option is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned
by the real user. If the -k option is used or implied, the g-file's mode
is 644; otherwise the mode is 444. Only the real user need have write
permission in the current directory.

Page 4 October 10, 1988

GET (CP) GET (CP)

The I-file contains a table showing which deltas were applied in gen­
erating the retrieved text. The I-file is created in the current directory
if the -1 option is used; its mode is 444 and it is owned by the real user.
Only the real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise

b. A blank character if the delta was applied or wasn't applied and
ignored;
* if the delta wasn't applied and wasn't ignored

c. A code indicating a "special' ' reason why the delta was or was
not applied:

d. Blank

"I": Included
"X": Excluded
"C": Cut off (by a -c option)

e. sees identification (SID)
f. Tab character
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation
h. Blank
i. Login name of person who created delta

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
option along to delta. Its contents are also used to prevent a subse­
quent execution of get with an -e option for the same SID until delta is
executed or the joint edit flag, j, (see admin(CP» is set in the sees
file. The p-file is created in the directory containing the sees file and
the effective user must have write permission in that directory. Its
mode is 644 and it is owned by the effective user. The format of the
p-file is: the gotten SID, followed by a blank, followed by the SID that
the new delta will have when it is made, followed by a blank, fol­
lowed by the login name of the real user, followed by a blank, fol­
lowed by the date-time the get was executed, followed by a blank and
the -i option if it was present, followed by a blank and the -x option if
it was present, followed by a newline. There can be an arbitrary
number of lines in the p-file at any time; no two lines can have the
same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the com­
mand (i.e., get) that created it. The z-file is created in the directory
containing the sees file for the· duration of get. The same protection
restrictions as those for the p-file apply for the z-file. The z-file is
created mode 444.

October 10, 1988 PageS

GET (CP) GET (CP)

See Also

admin(CP), delta(CP), help(C), prs(CP), what(C), sccsfile(F)

Diagnostics

Use he/p(C) for explanations.

Notes

If the effective user has write permission (either explicitly or impli­
citly) in the directory containing the sees files, but the real user
doesn't, then only one file may be named when the -e option is used.

Page 6 October 10, 1988

GETS (CP) GETS (CP)

Name

gets - Gets a string from the standard input.

Syntax

gets [string]

Description

gets can be used with csh(C) to read a string from the standard input.
If string is given it is used as a default value if an error occurs. The
resulting string (either string or as read from the standard input) is
written to the standard output. If no string is given and an error
occurs, gets exits with exit status 1.

See Also

line(C), csh(C)

October 10, 1988 Page 1

HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of executable binary files.

Syntax

hdr l-dhprsSt] file ...

Description

hdr displays executable binary file headers, symbol tables, and text or
data relocation records in human-readable formats. It also prints out
seek positions for the various segments in the executable binary file.

a.out, x.out, and x.out segmented formats and archives are under­
stood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol's index or position
in the symbol table, printed in decimal. The index of the first entry is
zero. The second field is the type, printed in hexadecimal. The third
field is the s seg field, printed in hexadecimal. The fourth field is the
symbol's value in hexadecimal. The fifth field is a single character
which represents the symbol's type as in nm(CP), except C common is
not recognized as a special case of undefined. The last field is the
symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ill, or index, in decimal. This field is used for external reloca­
tions as an index into the symbol table. It should reference an unde­
fined symbol table entry. The third field is the position, or offset,
within the current segment at which relocation is to take place; it is
printed in hexadecimal. The fourth field is the name of the segment
referenced in the relocation: text, data, bss or EXT for external. The
fifth field is the size of relocation: byte, word (2 bytes), or long. The
last field will indicate, if present, that the relocation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

October 10, 1988 Page 1

HDR (CP) HDR (CP)

Options and their meanings are:

-h Causes the executable binary file header and extended header to be
printed out. Each field in the header or extended header is labeled.
This is the default option.

-d Causes the data relocation records to be printed out.

-t Causes the text relocation records to be printed out.

-r Causes both text and data relocation to be printed.

-p Causes seek positions to be printed out as defined by macros in the
include file, <a.out.h>.

-s Prints the symbol table.

-S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also

a.out(F), nm(CP)

Page 2 October 10, 1988

LD (CP) LD (CP)

Name

ld - Invokes the link editor.

Syntax

ld [options] filename ...

Description

ld is the XENIX link editor. It creates an executable program by com­
bining one or more object files and copying the executable result to
the file a.out. The filename must name an object or library file. By
convention these names have the ".0" (for object) or ".a" (for
archive library) extensions. If more than one name is given, the names
must be separated by one or more spaces. If errors occur while link­
ing' ld displays an error message; the resulting a.out file is unexecut­
able.

ld concatenates the contents of the given object files in the order given
in the command line. Library files in the command line are examined
only if there are unresolved external references encountered from pre­
vious object files. Library files must be in ranlib (CP) format, that is,
the first member must be named __ .SYMDEF, which is a dictionary
for the library. ld ignores the modification dates of the library and the
__ .SYMDEF entry, so if object files have been added to the library
since __ .SYMDEF was created, the link may result in an "invalid
object module."

The library is searched iteratively to satisfy as many references as
possible and only those routines that define unresolved external refer ...
ences are concatenated. Object and library files are processed at the
point they are encountered in the argument list, so the order of files in
the command line is important. In general, all object files should be
given before library files. ld sets the entry point of the resulting pro­
gram to the beginning of the first routine.

ld should be invoked using the cc (CP) command instead of invoking it
directly. cc invokes ld as the last step of compilation, providing all
the necessary C-Ianguage support routines. Invoking ld directly is not
recommended since failure to give command line arguments in the
correct order can result in errors.

October 10, 1988 Page 1

LD (CP) LD (CP)

There are the following options:

-Anum
Creates a standalone program whose expected load address (in
hexadecimal) is num. This option sets the absolute flag in the
header of the a.out file. Such program files can only be executed as
standalone programs. Options -A and -F are mutually exclusive.

-Bnum
Sets the text selector bias to the specified hexadecimal number.

-cnum

-c

Alters the default target CPU in the x.out header. num can be 0, 1,
2, or 3 indicating 8086, 80186, 80286 and 80386 processors,
respectively. The default on 8086/80286 systems is O. The default
on 80386 systems is 3. Note that this option only alters the default;
if object modules containing code for a higher numbered processor
are linked, then that will take precedence over the default.

Causes the link editor to ignore the case of symbols.

-Dnum
Sets the data selector bias to the specified hexadecimal number.

-F num
Sets the size of the program stack to num bytes where num is a
hexadecimal number. This option is ignored for 80386 programs
which have a variable sized stack. By default 8086 programs have
a variable stack located at the top of the first data segment, and
80286 programs have a fixed size 4096 byte stack. The -F option
is incompatible with the -A option that cannot be opened by more
than one user at the same time.

-g Includes symbolic information for sdb.

-i
Creates separate instruction and data spaces for small model pro­
grams. When the output file is executed, the program text and data
areas are allocated separate physical segments. The text portion
will be read-only and shared by all users executing the file.

-La
Sets advisory file locking. Advisory locking is used on files with
access modes that do not require mandatory locking.

-Lm
Sets mandatory file locking. Mandatory file locking is used on files
that cannot be opened by more than one process at a time.

Page 2 October 10, 1988

LD (CP) LD (CP)

-m name
Creates a link map file named name that includes public symbols.

-M.x
Specifies the memory model. x can have the following values:
s small
m middle
1 large
h huge
e mixed

annum
Truncates symbols to the length specified by num.

-Nnum
Sets the page size to hex-num (which should be a multiple of 512) -
the default is 1024 for 80386 programs. 8086/80186/80286 pro­
grams do not normally have page-aligned x.out files and the default
for these is O.

-0 name
Sets the executable program filename to name instead of a.out.

-p
Disables packing of segments

-r Invokes the incremental linker, /lib/ldr , with the arguments
passed to ld to produce a relocatable output file.

-R Ensures that the relocation table is of non-zero size. Important for
8086 compatibility.

-Rd num
Specify the data segment relocation offset (80386 only). num is
hexadecimal.

-Rt num

-s

Specify the text segment relocation offset (80386 only) num is hex­
adecimal.

Strips the symbol table.

-Snum
Sets the maximum number of segments to num. If no argument is
given, the default is 128.

-u symbol
Designates the specified symbol as undefined.

October 10, 1988 Page 3

LD (CP) LD (CP)

-v num
Specifies the XENIX version number. Acceptable values for num
are 2, 3, or 5; 5 is the default.

Files

/binlld

See Also

ar(CP), masm(CP), cc(CP), ranlib(CP)

Notes

The user must make sure that the most recent library versions have
been processed with ranlib (CP) before linking. If this is not done, Id
cannot create executable programs using these libraries.

ld operates on COFF files transparently, mapping COFF symbol types
to standard XENIX x.out symbol types when possible.

Page 4 October 10, 1988

LEX (CP) LEX (CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [-ctvn] [file] ...

Description

lex generates programs to be used in simple lexical analysis of text.

The inputfiles (standard input default) contain strings and expressions
to be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the file
is found; then the corresponding program text is executed. The actual
string matched is left in yytext , an external character array. Matching
is done in order of the strings in the file. The strings may contain
square brackets to indicate character classes, as in [abx-zl to indicate
a, b, x, y, and z; and the operators *, +, and? mean respectively; any
nonnegative number of, any positive number of, and either zero or one
occurrences of, the previous character or character class. The charac­
ter . is the class of all Ascn characters except newline. Parentheses
for grouping and vertical bar for alternation are also supported. The
notation r{d,e} in a rule indicates between d and e instances of regu­
lar expression r. It has higher precedence than /, but lower than *, ?,
+, and concatenation. The character " at the beginning of an expres­
sion permits a successful match only immediately after a newline, and
the character $ at the end of an expression requires a trailing newline.
The character / in an expression indicates trailing context; only the
part of the expression up to the slash is returned in yytext, but the
remainder of the expression must follow in the input stream. An
operator character may be used as an ordinary symbol if it is within "
symbols or preceded by \. Thus, [a-zA-Zl+ matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named
yylexO, and the library contains a mainO which calls it. The action
REJECT on the right side of the rule causes this match to be rejected
and the next suitable match executed; the function yymoreO accumu­
lates additional characters into the same yytext; and the function
yyless(p) pushes back the portion of the string matched beginning at
p, which should be between yytext and yytext +yyleng. The macros
input and output use files yyin and yyout to read from and write to,
defaulted to stdin and stdout, respectively.

October 10, 1988 Page 1

LEX (CP) LEX (CP)

Any line beginning with a blank is assumed to contain only C text and
is copied; if it precedes % % it is copied into the external definition
area of the lex.yy.c file. All rules should follow a % %, as in YACC.
Lines preceding % % which begin with a nonblank character defme
the string on the left to be the remainder of the line; it can be called
out later by surrounding it with {}. Note that curly brackets do not
imply parentheses; only string substitution is done.

Example

D
%%
if
[a-z]+
O{D}+
{D}+
"++"
"+"
"/*"

[0-9]

printf(' 'IF statement\n' ');
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf(' 'unary op\n' ');
printf(' 'binary op\n' ');
{ loop:

while (inputO != ~*~);
switch (inputO)

{
case ~ r: break;
case ~*~: unputC*~);
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or
YY.

The options must appear before any files. The option -c indicates C
actions and is the default, -t causes the Iex.yy.c program to be written
instead to standard output, -v provides a one-line summary of statistics
of the machine generated, -n will not print out the - summary. Multi­
ple files are treated as a single file. If no files are specified, standard
input is used.

Certain table sizes for the resulting finite state machine can be set in
the definitions section:

%pn
number of positions is n (default 2000)

%nn
number of states is n (500)

%tn
number of parse tree nodes is n (1000)

Page 2 October 10, 1988

LEX (CP) LEX (CP)

%an
number of transitions is n (3000)

The use of one or more of the above automatically implies the -v
option, unless the -0 option is used.

See Also

yacc(CP)
XENIX Programmer's Guide

October 10, 1988 Page 3

LINT (CP) LINT (CP)

Name

lint - Checks C language usage and syntax.

Syntax

lint [-abchnpuvx] [-Idir] [-DUname] [-ollib] file ...

Description

lint attempts to detect features of the C program file that are likely to
be bugs, nonportable, or wasteful. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is checked
to find functions which return values in some places and not in others,
functions called with varying numbers of arguments, and functions
whose values are not used.

If more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou­
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library llibc.ln. If lint is
invoked with the -p option, it checks function definitions from the
portable lint library llibport.ln.

Any number of lint options may be used, in any order. The following
options are used to suppress certain kinds of complaints:

-a Suppresses complaints about assignments of long values to vari­
ables that are not long.

-b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in a
large number of such complaints.)

-c Suppresses complaints about casts that have questionable portabil­
ity.

-h Does not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

-u Suppresses complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

-v Suppresses complaints about unused arguments in functions.

October 10, 1988 Page 1

LINT (CP) LINT (CP)

-x Does not report variables referred to by external declarations but
never used.

The following arguments alter lint's behavior:

-n Does not check compatibility against either the standard or the
portable lint library.

-0 Creates a hashed (i.e. faster) lint library called lib.ln. The lint
library produced is the input that is given to lint's second pass.
This option simply causes the file to be saved in the named lint
library. To produce the lint library without extraneous messages,
use the -x option. The -v option is useful if the source file(s) for
the lint library are just external interfaces. These option settings
are also available through the use of "lint comments" (see below).

-p Attempts to check portability to other dialects of C.

-llibname
Checks function definitions in the specified lint library. For exam­
ple, -1m causes the library llibm.ln to be checked.

The -D, -U, and -I options of cc(CP) are also recognized as separate
arguments.

Certain conventional comments in the C source will change the
behavior of lint:

j*NOTREACHED*j
At appropriate points stops comments about unreachable code.

j*V ARARGSn *j
Suppresses the usual checking for variable numbers of argu­
ments in the following function declaration. The data types of
the first n arguments are checked; a missing n is taken to be 0.

j*ARGSUSED*j
Turns on the -v option for the next function.

j*LINTLIBRARY*j
Shuts off complaints about unused functions in this file.

lint produces its first output on a per source file basis. Complaints
regarding included files are collected and displayed after all source
files have been processed. Finally, information gathered from all
input files is collected and checked for consistency. At this point, if it
is not clear whether a complaint stems from a given source file or from
-one of its included files, the source filename is displayed followed by
a question mark.

Page 2 October 10, 1988

LINT (CP) LINT (CP)

Files

/usr/lib/lint[12] Program files

/usr/lib/llibc.ln, /usr/lib/llibport.ln, /usr/lib/llibm.ln,
/usr/lib/llibdbm.ln, /usr/lib/llibtermlib.ln
Standard lint libraries (binary format)

/usr/lib/llibc, /usr/lib/llibport, /usr/lib/llibm, /usr/lib/llibdbm,
/usr/lib/llibtermlib
Standard lint libraries (source format)

/usr/tmp/* lint * Temporaries

See Also

cc(CP)

Notes

exit(S), and other functions which do not return, are not understood.
This can cause improper error messages.

October 10, 1988 Page 3

LORDER (CP) LORDER (CP)

Name

lorder - Finds ordering relation for an object library.

Syntax

lorder file '"

Description

lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP». The standard output
is a list of pairs of object filenames. The first file of the pair refers to
external identifiers defined in the second. The output may be pro­
cessed by tsort(CP) to find an ordering of a library suitable for one­
pass access by ld(CP).

Example

The following command builds a new library from existing .0 files:

ar cr library' lorder *.0 I tsort'

Files

*symre~ *symdef Temp files

See Also

ar(CP), Id(CP), tsort(CP)

Notes

Object files whose names do not end with .0, even when contained in
library archives, are overlooked. Their global symbols and references
are attributed to some other file.

October 10, 1988 Page 1

M4 (CP) M4 (CP)

Name

m4 - Invokes a macro processor.

Syntax

m4 [options] [files]

Description

m4 is a macro processor intended as a front end for Ratfor, C, and
other languages. Each of the argument files is processed in order; if
there are no files, or if a filename is -, the standard input is read. The
processed text is written on the standard output.

The options and their effects are as follows:

-e Operates interactively. Interrupts are ignored and the output is
unbuffered.

-s Enables line sync output for the C preprocessor (#line ...)

-Bint
Changes the size of the push-back and argument collection buffers
from the default of 4,096.

-Hint
Changes the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint
Changes the size of the call stack from the default of 100 slots.
Macros take three slots, and nonmacro arguments take one.

-Tint
Changes the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any filenames
and before any -D or -U flags:

-Dname [=val]
Defines name to valor to null in val's absence.

-Uname
Undefines name.

October 10, 1988 Page 1

M4 (CP) M4 (CP)

Macro Calls

Macro calls have the form:

name(arg1,arg2, ... , argn)

The (must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no arguments.
Leading unquoted blanks, tabs, and newlines are ignored while col­
lecting arguments. Potential macro names consist of alphabetic
letters, digits, and underscore _, where the first character is not a digit.

Left and right single quotation marks are used to quote strings. The
value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text.
After argument collection, the value of the macro is pushed back onto
the input stream and rescanned.

m4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine

defn

pushdef

popdef

ifdef

Page 2

The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments are replaced
by the null string; $# is replaced by the number of argu­
ments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument
is quoted (with the current quotation marks).

Removes the definition of the macro named in its argu­
ment.

Returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s), exposing
the previous one if any.

If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third argu­
ment, the value is null. The word XENIX is predefined
inm4.

October 10, 1988

M4 (CP)

shift

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

changequote Changes quotation marks to the first and second argu­
ments. The symbols may be up to five characters long.
changequote without arguments restores the original
values (Le., " ').

changecom Changes left and right comment markers from the
default # and newline. With no arguments, the com­
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu­
ments, both markers are affected. Comment markers
may be up to five characters long.

divert m4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initially stream 0 is the current stream.
The divert macro changes the current output stream to
its (digit-string) argument. Output diverted to a stream
other than 0 through 9 is discarded.

undivert Causes immediate output of text from diversions named
as arguments, or all diversions if no argument. Text
may be undiverted into another diversion. Undiverting
discards the diverted text.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including th,e
next newline.

ifelse Has three or more arguments. If the first argument is
the same string as the second, then the value is the third
argument. If not, and if there are more than four argu­
ments, the process is repeated with arguments 4, 5, 6
and 7. Otherwise, the value is either the fourth string,
or if it is not present, null.

incr Returns the value of its argument incremented by 1.
The value of the argument is calculated by interpreting
an initial digit-string as a decimal number.

decr Returns the value of its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, -, *, /, %,
" (exponentiation), bitwise &, I, ", and -; relationals;
parentheses. Octal and hex numbers may be specified

October 10, 1988 Page 3

M4 (CP)

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

Page 4

M4 (CP)

as in C. The second argument specifies the radix for
the result; the default is 10. The third argument may be
used to specify the minimum number of digits in the
result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or -1 if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of the
substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given by
the third. No abbreviations are permitted.

Returns the contents of the file named in the argument.

Identical to include, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu­
ment. No value is returned.

Is the return code from the last call to syscmd.

Fills in a string of XXXXX in its argument with the
current process ID.

Causes immediate exit from m4. Argument 1, if given,
is the exit code; the default is O.

Argument 1 will be pushed back at final EOF; example:
m4wrap(' cleanup() /)

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be untraced
only by specific calls to traceoff.

October 10, 1988

MAKE (CP) MAKE (CP)

Name

make - Maintains, updates, and regenerates groups of programs.

Syntax

make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-bI [-e] [-t] [-q] [-d]
[names]

Description

The following is a brief description of all options and some special
names:

-f make/ile Description filename. make/de is assumed to be the name
of a description file. A filename of - denotes the standard
input. The contents of make file override the built-in rules
if they are present.

-p Prints out the complete set of macro definitions and target
descriptions.

-i Ignores error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears
in the description file.

-k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

-s Silent mode. Does not print command lines before exe­
cuting. This mode is also entered if the fake target name
.SILENT appears in the description file.

-r Does not use the built-in rules.

-n No execute mode. Prints commands, but does not execute
them. Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within
makefiles.

-t Touches the target files (causing them to be up-to-date)
rather than issues the usual commands.

-d Debug mode. Prints out detailed information on files and
times examined.

October 10, 1988 Page 1

MAKE (CP) MAKE (CP)

-q Question. The make command returns a zero or nonzero
status code depending on whether the target file is or is
not up-to-date .

. DEFAULT If a file must be made but there are no explicit commands
or relevant built-in rules, the commands associated with
the name .DEFAULT are used if it exists .

. PRECIOUS
Dependents of this target will not be removed when quit
or interrupt are hit.

.SILENT Same effect as the -8 option .

. IGNORE Same effect as the -i option.

make executes commands in makefile to update one or more target
names. Name is typically a program. If no -f option is present,
makefile, Makefile, s.makefile, and s.Makefile are tried in order. If
makefile is -, the standard input is taken. More than one -f makefile
argument pair may appear.

make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

make file contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnulllist of targets,
then a :, then a (possibly nUll) list of prerequisite files or dependen­
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first line
that does not begin with a tab or # begins a new dependency or macro
definition. Shell commands may be continued across lines with the
<backslash><newline> sequence. (#) and newline surround com­
ments.

The following make file says that pgm depends on two files a.o and
b.o, and that they in tum depend on their corresponding source files
(a.c and b.c) and a common file incI.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the -8 option is present, or the
entry .sILENT: is in makefile, or unless the first character of the com­
mand is @. The -n option specifies printing without execution; how-

Page 2 October 10, 1988

MAKE (CP) MAKE (CP)

ever, if the command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKEFLAGS macro under
Environment). The -t (touch) option updates the modified date of a
file without executing any commands.

Commands returning nonzero status normally terminate make. If the
-i option is present, or the entry .IGNORE: appears in make file , or if
the line specifying the command begins with <tab><hyphen>, the
error is ignored. If the -k option is present, work is abandoned on the
current entry, but continues on other branches that do not depend on
that entry.

The -b option allows old make files (those written for the old version
of make) to run without errors. The difference between the old ver­
sion of make and this version is that this version requires all depen­
dency lines to have a (possibly nUll) command associated with them.
The previous version of make assumed if no command was specified
explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless .PRECIOUS is
on it.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment variables
are processed before any make file and after the internal rules; thus,
macro assignments in a make file override environment variables. The
-e option causes the environment to override the macro assignments in
a makefile.

The MAKEFLAGS environment variable is processed by make as con­
taining any legal input option (except 1, -p, and -d) defined for the
command line. Further, upon invocation, make "invents" the vari­
able if it is not in the environment, puts the current options into it, and
passes it on to invocations of commands. Thus, MAKEFLAGS always
contains the current input options. This proves very useful for
"super-makes". In fact, as noted above, when the -n option is used,
the command $(MAKE) is executed anyway; hence, one can perform a
make -n recursively on a whole software system to see what would
have been executed. This is because the -n is put in MAKEFLAGS and
passed to further invocations of $(MAKE). This is one way of debug­
ging all of the make files for a software project without actually doing
anything.

Macros

Entries of the form stringl = string2 are macro definitions. Subse­
quent appearances of $(stringl [:substl :[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional

October 10, 1988 Page 3

MAKE (CP) MAKE (CP)

:substl =.subst2 is a substitute sequence. If it is specified, all nonover­
lapping occurrences of substl in the named macro are replaced by
subst2. Strings (for the purposes of this type of substitution) are del­
imited by blanks, tabs, newline characters, and beginnings of lines.
An example of the use of the substitute sequence is shown under
Libraries.

Internal Macros

There are five internally maintained macros which are useful for writ­
ing rules for building targets:

$* The macro $* stands for the filename part of the current depen­
dent with the suffix deleted. It is evaluated only for inference
rules.

$@ The $@ macro stands for the full target name of the current tar­
get. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the "manufactured" dependent
filename). Thus, in the .c.o rule, the $< macro would evaluate
to the .c file. An example for making optimized .0 files from .c
files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the make file
are evaluated. It is the list of prerequisites that are out of date
with respect to the target; essentially, those modules which must
be rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib(file.o). In this case, $@ evalu­
ates to lib and $% evaluates to the library member,file.o.

Four of the five macros can have alternative forms. When an upper
case D or F is appended to any of the four macros the meaning is
changed to "directory part" for D and "file part" for F. Thus, $(@D)
refers to the directory part of the string $@. If there is no directory
part .I is generated. The only macro excluded from this alternative
form is $?

Page 4 October 1 0, 1988

MAKE (CP) MAKE (CP)

Suffixes

Certain names (for instance, those ending with .0) have default depen­
dents such as .c, .s, etc. If no update commands for such a file appear
in makefile, and if a default dependent exists, that prerequisite is com­
piled to make the target. In this case, make has inference rules which
allow building files from other files by examining the suffixes and
detennining an appropriate inference rule to use. The current default
inference rules are:

.c .c- .sh .sh- .c.o .C-.O .C-.C .s.o .S-.O .y.o .y-.o .l.o .r.o

.y.c .y-.c .l.c .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c for
the make program. These rules can be locally modified. To print out
the rules compiled into the make on any machine in a fonn suitable
for recompilation, the following command is used:

make -fp - 2>/dev /null </dev /null

The only peculiarity in this output is the (null) string which print/(S)
prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(F».
Thus, the rule .c~.o would transform an sees C source file into an
object file (.0). Because the s. of the sees files is a prefix it is incom­
patible with make's suffix point-of-view. Hence, the tilde is a way of
changing any file reference into an sees file reference.

A rule with only one suffix (i.e . . c:) is the definition of how to build x
from x.C. In effect, the other suffix is null. This is useful for building
targets from only one source file (e.g., shell procedures, simple C pro­
grams).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and a
rule exist is inferred as a prerequisite.

The default list is:

.SUFFIXES: .0 .c .y .1 .s

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine. Mul­
tiple suffix lists accumulate; .SUFFIXES: with no dependencies clears
the list of suffixes.

October 10, 1988 Page 5

MAKE (CP)

Inference Rules

The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

MAKE (CP)

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For example,
CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
cc(CP), lex (CP), and yacc (CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a
file with suffix .0 from a file with suffix .c is specified as an entry with
.c.o: as the target and no dependents. Shell commands associated with
the target define the rule for making a .0 file from a .c file. Any target
that has no slashes in it and starts with a dot is identified as a rule and
not as a true target.

Libraries

If a target or dependency name contains parentheses, it is assumed to
be an archive library, the string within parentheses referring to a
memher within the library. Thus lib(file.o) and $(LIB)(file.o) both
refer to an archive library which contains file.o. (This assumes the LIB
macro has been previously defined.) The expression $(LIB)(filel.o
file2.0) is not legal. Rules pertaining to archive libraries have the
form .xx.a where the XX is the suffix from which the archive member
is to be made. An unfortunate byproduct of the current implementa­
tion requires the XX to be different from the suffix of the archive
member. Thus, one cannot have lib(file.o) depend upon file.o expli­
citly. The most common use of the archive interface follows. Here,
we assume the source files are all C type source:

Page 6

lib:
Jib(file 1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

October 10, 1988

MAKE (CP) MAKE (CP)

In fact, the .c.a rule listed above is built into make and is unnecessary
in this example. A more interesting, but more limited example of an
archive library maintenance construction follows:

lib:
lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The $?
list is defined to be the set of object filenames (inside lib) whose C
source files are out of date. The substitution mode translates the .0 to
.c. (Unfortunately, one cannot as yet transform to .c) Note also, the
disabling of the .c .a: rule, which would have created each object file,
one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very
cumbersome if the archive library contains a mix of assembly pro­
grams and C programs.

Files

[Mm]akefile

s.[Mm]akefile

See Also

sh(C)

Notes

Some commands return nonzero status inappropriately; use -i to over­
come the difficulty. Commands that are directly executed by the shell,
notably cd (C), are ineffectual across newlines in make. The syntax
(lib(filel.o file2.0 file3.0) is illegal. You cannot build lib(file.o) from
file.o. The macro $(a:.o=.c-) is not available.

October 10, 1988 Page 7

MASM(CP) MASM(CP)

Name

masm - Invokes the XENIX assembler.

Syntax

masm [options] sourcefile

Description

masm is the XENIX 8086/286/386 assembler. It reads and assembles
8086/80286/80386 assembly language instructions from the source
file named sourcefile. It then creates a linkable object file name
sourcefile.o, or an executable program named a.out.

The extension .s is recommended but not required. If this extension is
not given, masm displays a warning and continues processing.

There are the following options:

- a This options puts the assembled output segments in alphabetic
order before copying them to the object file.

- c Outputs cross reference data for each assembled file to
filename. cr!.

-c
Outputs cross reference data for a set of assembled file. The cross
reference data is written to files with the same names as the input
files, with the filename extension ".erf."

- d Adds a pass I listing to the assembly listing file filename. 1st .

-D
sym Defines the symbol appended to the -D flag as a null TEXT­
MACRO.

- e Generates floating point code to emulate the 8087 or 287 coproces­
sor. Programs created with this option must be linked with an
appropriate math library before being executed.

- I path Defines the path appended to the -I flag as the search path for
include files. Up to 10 include paths are allowed in one invocation
ofmasm.

-I [list file] Creates an assembly listing file with the same basename
as the source file or, if the listfile parameter is given, with that name
but with a ".1st" extension. The file lists the source instructions,
the assembled (binary code) for each instruction and any assembly
errors. If filename is "-," the listing is written to stdout.

October 10, 1988 Page 1

MASM(CP) MASM(CP)

-Mx
This option directs masm to preserve lower case letters in public
and external names only when copying these names to the object
file. For all other purposes, masm converts the lower case to upper
case.

-Mu
Disables case sensitivity. Upper case is now treated as identical to
lower case.

- MI
Leave case of symbols alone.

- n This option generates information about the symbols used in the
assembled programs. The -I option must also be used for this
option to take effect.

- oobjfile
Copies the assembled instructions in octal to the file named objfile.
This file is executable only if no errors occurred during the assem­
bly. This option overrides the default object file name.

- Oobjfile
Copies the assembled instructions in binary to the file named
objfile.

- r Generates floating point code that can only be executed by an 8087
or 287 coprocessor.

- v Prints verbose error statistics on console. If not selected, only
error counts are displayed.

- x displays error messages on the standard error channel, in addition
to the messages generated in the listing file.

-x
Copies to the assembly listing all statements forming the body of
an IF directive whose expression (or condition) evaluates to false.

Files

/bin/masm

See Also

a.out(F), cc(CP), Id(CP)
Macro Assembler User's Guide

Page 2 October 10, 1988

MASM(CP) MASM (CP)

Notes

The default options are -MI and -e which enable case sensitivity and
allow emulation of a floating point processor. The options are flags
with the following default settings:

Flag Default Meaning of TRUE condition

a FALSE Outputs segments alphabetically
c FALSE Outputs cross reference data
C FALSE Outputs cross reference data
d FALSE Adds pass 1 listing to filename.lst

Dsym NULL No meaning if not defined
e FALSE Floating Point emulation

I path NULL No meaning if not defined
llistfile sourcefile.lst Source file is the default filename

M I Leave symbol case alone
n TRUE Outputs symbols if -I selected
0 TRUE Assembled output in binary
0 FALSE Assembled output in octal
r TRUE Real 8087 instead of emulated format
v FALSE Prints verbose error statistics
x TRUE Displays errors on console
X FALSE Toggle setting of conditional flag

Return Value

The masm exit codes have the following meanings:

Code Meaning

October 10, 1988

o
1
2
3
4
5
6
7

8
9

No error
Argument error
Unable to open input file
Unable to open listing file
Unable to open object file
Unable to open cross reference file
Unable to open include file
Assembly errors. If fatal, the object

file is deleted.
Memory allocation error
Real number input not allowed
in this version.

Page 3

MKSTR (CP) MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr [-] messagefile prefix file ...

Description

mkstr is used to create files of error messages. Its use can make pro­
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error messages
do not have to be constantly swapped in and out.

mkstr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefix and
the original name. The optional dash (-) causes the error messages to
be placed at the end of the specified message file for recompiling part
of a large mkstr ed program.

A typical mkstr command line is

mkstr pi strings xx *.c

This command causes all the error messages from the C source files in
the current directory to be placed in the file pistrings and processed
copies of the source for these files to be placed in files whose names
are prefixed with xx.

To process the error messages in the source to the message file, mkstr
keys on the string 'errorC" in the input stream. Each time it occurs,
the C string starting at the '''' is placed in the message file followed by
a null character and a newline character; the null character terminates
the message so it can be easily used when retrieved, the newline char­
acter makes it possible to sensibly cat the error message file to see its
contents. The massaged copy of the input file then contains a lseek
pointer into the file which can be used to retrieve the message. For
example, the command changes

error("Error on reading", a2, a3, a4);

into

error(m, a2, a3, a4);

October 10, 1988 Page 1

MKSTR (CP) MKSTR (CP)

where m is the seek position of the string in the resulting error mes­
sage file. The programmer must create a routine error which opens
the message file, reads the string, and prints it out. The following
example illustrates such a routine.

Example

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;

error(al, a2, a3, a4)
int aI, a2, a3, a4;
{

char buf[256];

if (efil < 0) {

}

efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);
exit(1);

if (lseek(efil, (long) aI, 0) II read(efil, buf, 256) <= 0) {
printf(' 'Unable to find error msg at seek address %d\n
exit(I);
}

printf(buf, a2, a3, a4);

See Also

Iseek(S), xstr(CP)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary .

Page 2 October 10, 1988

NM(CP) NM(CP)

Name

run - Prints name list.

Syntax

nm [-acgnoOprsSuv] [+offset] [file ...]

Description

nm prints the name list (symbol table) of each object file in the argu­
ment list. If an argument is an archive, a listing for each object file in
the archive will be produced. nm works transparently on COFF files
and XENIX generated object files. nm translates all possible COFF
symbols into standard XENIX object symbols.

If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks if
undefined) and one of the letters U (undefined), A (absolute), T (text
segment symbol), D (data segment symbol), B (bss segment symbol), S
(segment name), C (common symbol), K (8086 common segment), or
S (segment name). If the symbol table is in segmented format, symbol
values are displayed as segment:offset. If the symbol is local (non­
external), the type letter is in lowercase. The output is sorted alpha­
betically.

Options are:

-a Attempt to print the namelist of all modules in an archive
library. Normally, nm silently ignores any library members
which are not valid object modules. Using this option causes
nm to report an error for all such modules. Note that the first
member in any library which has been processed by ranlib(CP)
is called __ .SYMDEF and is not a valid object module, thus
the -a option will always produce at least one error message
when used on such a library.

-c Print only C program symbols (symbols which begin with '_') as
they appeared in the C program.

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather
than only once.

October 10, 1988 Page 1

NM (CP) NM (CP)

-0 Print symbol values in octal.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-s Sort by size of symbol and display each symbol's size instead of
value. The last symbol in each text or data segment may be
assigned a size of o. This implies the -n option.

-S Switch the display format. If the symbol table is in segmented
format, print values in non-segmented format. If not segmented,
print values in segmented format. Segment offsets in 386 object
modules and executable files are 32 bits rather than 16 bits.

a.out Default input file

See Also

ar(CP), ar(F), a.out(F)

Page 2 October 10, 1988

PROF (CP) PROF (CP)

Name

prof - Displays profile data.

Syntax

prof [-a] [-I] [file]

Description

prof interprets the file mon.out produced by the monitor subroutine.
Under default modes, the symbol table in the named object file (a.out
default) is read and correlated with the mon.out profile file. For each
external symbol, the percentage of time spent executing between that
symbol and the next is printed (in decreasing order), together with the
number of times that routine was called and the number of mil­
liseconds per call.

If the -a option is used, all symbols are reported rather than just exter­
nal symbols. If the -I option is used, the output is listed by symbol
value rather than decreasing percentage.

To cause calls to a routine to be tallied, the -p option of cc must have
been given when the file containing the routine was compiled. This
option also arranges for the mOD.out file to be produced automati­
cally.

Files

mon.out For profile

a.out For namelist

See Also

monitor(S), profil(S), cc(CP)

Notes

Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

October 10, 1988 Page 1

PROF (CP) PROF (CP)

Warning

Profiling gives incorrect results for hybrid model 286 programs (i.e.
those with 16 bit text pointers within modules and 32 bit text pointers
between modules).

Page 2 October 10, 1988

PRS (CP) PRS (CP)

Name

prs - Prints an sees file.

Syntax

prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-a] files

Description

prs prints, on the standard output, all or part of an sees file (see
sees file (F» in a user supplied fonnat. If a directory is named, prs
behaves as though each file in the directory were specified as a named
file, except that nonsees files (last component of the pathname does
not begin with s.), and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each line of the standard input
is taken to be the name of an sees file or directory to be processed;
nonSeeS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of options,
and filenames.

All the described options apply independently to each named file:

-d[dataspee]

-r[SID]

-e

-I

-a

October 10, 1988

Used to specify the output data specification. The
dataspee is a string consisting of sees file data
keywords (see Data Keywords) interspersed with
optional user-supplied text.

Used to specify the sees IDentification (SID)
string of a delta for which infonnation is desired. If
no SID is specified, the SID of the most recently
created delta is assumed.

Requests infonnation for all deltas created earlier
than and including the delta designated via the -r
option.

Requests infonnation for all deltas created later
than and including the delta designated via the -r
option.

Requests printing of infonnation for both removed,
i.e., delta type = R, (see rmdel(CP» and existing,
Le., delta type = D, deltas. If the -a option is not
specified, infonnation for existing deltas only is
provided.

Page 1

PRS (CP) PRS (CP)

Data Keywords

Data keywords specify which parts of an sees file are to be retrieved
a..'1d output. All parts of an sees file (see sccsfile(F) have an associ­
ated data keyword. There is no limit on the number of times a data
keyword may appear in a data spec.

The information printed by prs consists of the user-supplied text and
appropriate values (extracted from the sees file) substituted for the
recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either simple, in which key­
word substitution is direct, or multiline, in which keyword substitution
is followed by a carriage return.

User-supplied text is any text other than recognized data keywords. A
tab is specified by \ t and carriage return/newline is specified by \ n.

Page 2 October 10, 1988

PRS(CP) PRS (CP)

TABLE 1. SCCS Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta infonnation Delta Table See below* S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu Lines unchanged by Delta nnnnn S

:DT: Delta type DorR S
:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer wh created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS::DS: ... S
:Dx: Deltas excluded (seq #) :DS::DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Fl~gs text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S

:LK: Locked releases :R: ... S
:Q: User defined keyword text S
:M: Module names text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :R: S
:ND: Null delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body B~~y text M
:GB: Gotten body text M
:W: A fonn of what(C) string N/A :Z::M:\t:I: S
:A: A fonn of what(C) string N/A :Z::Y::M::I::Z: S
:Z: what(C) string delimiter N/A @(#) S
:F: SCCS filename N/A text S

:PN: SCCS file pathname N/A text S

* :Dt: = :DT::I::D::T::P::DS::DP:

October 10, 1988 Page 3

PRS (CP)

Examples

The following:

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

PRS (CP)

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta forpgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only option allowed to
be used with the special case is the -a option.

Files

/tmp/pr?????

See Also

admin(CP), delta(CP), get(CP), help(C), sccsfile(F)

Diagnostics

Use help (C) for explanations.

Page 4 October 10, 1988

RANLIB (CP) RANLIB (CP)

Name

ranlib - Converts archives to random libraries.

Syntax

ranlib archive ...

Description

ranlib converts each archive to a form which can be loaded more
rapidly by the loader, by adding a table of contents named __ oSYM­
DEF to the beginning of the archive. It uses ar(CP) to reconstruct the
archive, so sufficient temporary file space must be available in the file
system containing the current directory.

See Also

ld(CP), ar(CP), copy(C), settime(ADM)

Notes

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause ld to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader ld warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

October 10, 1988 Page 1

RATFOR (CP) RATFOR (CP)

Name

ratfor - Converts Rational FORTRAN into standard FORTRAN.

Syntax

ratfor [option ...] [filename ...]

Description

rat/or converts a rational dialect of FORTRAN into ordinary irrational
FORTRAN. rat/or provides control flow constructs essentially identi­
cal to those in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

It also provides some additional syntax to make programs easier to
read and write:

Free form input:
multiple statements/line; automatic continuation

Comments:
this is a comment

Translation of relationals:
>, >=, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

October 10, 1988 Page 1

RATFOR (CP) RATFOR (CP)

Define:
define name replacement

Include:
include filename

The following options are available:

-h Causes quoted strings to be turned into 27H constructs.

-C Copies comments to the output, and attempts to format it neatly.
Normally, continuation lines are marked with an & in column 1.

-6x Makes the continuation character x and places it in column 6.

Page 2

REGCMP(CP) REGCMP (CP)

Name

regcmp - Compiles regular expressions.

Syntax

regcmp [-] files

Description

regcmp, in most cases, precludes the need for calling regcmp (see
regex(S)) from C programs. This saves on both execution time and
program size. The command regcmp compiles the regular expressions
in file and places the output in file.i. If the - option is used, the output
will be placed in file.c. The format of entries infile is a name (C vari­
able) followed by one or more blanks followed by a regular expression
enclosed in double quotation marks. The output of regcmp is C source
code. Compiled regular expressions are represented as extern char
vectors. File.i files may thus be included into C programs, or file .c
files may be compiled and later loaded. In the C program which uses
the regcmp output, regex(abc ,line) applies the regular expression
named abc to line. Diagnostics are self-explanatory.

Examples

name "([A-Za-z][A-Za-zO-9 _]*)$"0

telno "\({0,1 }([2-9][01][1-9])$0\){ 0,1} *"
"([2-9][0-9]{2})$1[-]{0,1}"
"([0-9]{ 4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex(S)

October 10, 1988 Page 1

RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta from an sees file.

Syntax

rmdel -rSID files

Description

rmdel removes the delta specified by the SID from each named sees
file. The delta to be removed must be the newest (most recent) delta
in its branch in the delta chain of each named sees file. In addition,
the SID specified must not be that of a version being edited for the
purpose of making a delta. That is, if a p-file exists for the named
sees file, the SID specified must not appear in any entry of the p­
file(see get(CP».

If a directory is named, rmdel behaves as though each file in the direc­
tory were specified as a named file, except that nonsees files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the name of an
sees file to be processed; nonSeeS files and unreadable files are
silently ignored.

Files

x-file See delta (CP)

z-file See delta (CP)

See Also

delta(CP), get(CP), help(C), prs(CP), sccsfile(F)

Diagnostics

Use help (C) for explanations.

October 10, 1988 Page 1

SACT(CP) SACT(CP)

Name

sact - Prints current sees file editing activity.

Syntax

sact files

Description

sact informs the user of any impending deltas to a named sees file.
This situation occurs when get(CP) with the -e option has been previ­
ously executed without a subsequent execution of delta (CP). If a
directory is named on the command line, sact behaves as though each
file in the directory were specified as a named file, except that
nonsees files and unreadable files are silently ignored. If a name of -
is given, the standard input is read with each line being taken as the
name of an sees file to be processed.

The output for each named file consists of five fields separated by
spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

See Also

Specifies the SID of a delta that currently exists in the
sees file to which changes will be made to make the
new delta

Specifies the SID for the new delta to be created

Contains the logname of the user who will make the
delta i.e., executed a get for editing

Contains the date that get -e was executed

Contains the time that get -e was executed

delta(CP), get(CP), unget(CP)

Diagnostics

Use help (C) for explanations.

October 10, 1988 Page 1

SCCSDIFF (CP) SCCSDIFF (CP)

Name

sccsdiff - Compares two versions of an sees file.

Syntax

sccsdiff -rSIDI -rSID2 [-p] [-sn] files

Description

sccsdiff compares two versions of an sees file and generates the
differences between the two versions. Any number of sees files may
be specified, but arguments apply to all files.

-rSID?

-p

-sn

Files

SID and SID2 specify the deltas of an sees file that are
to be compared. Versions are passed to bdijJ(C) in the
order given.

Pipe output for each file through pr(C).

n is the file segment size that bdijJ will pass to dijJ(C).
This is useful when dijJ fails due to a high system load.

/tmp/get????? Temporary files

See Also

bdiff(C), get(CP), help(C), pr(C)

Diagnostics

file: No differences If the two versions are the same.

Use he/p(C) for explanations.

October 10, 1988 Page 1

SDB (CP) SDB (CP)

Name

sdb - Invokes symbolic debugger.

Syntax

sdb [objfil [corfil [directory:directory]]]

Description

sdb is a symbolic debugger which can be used with C programs.

ObJfit is an executable program file which has been compiled with the
-Zi (debug) option. The default for objfit is a.out. Corfi! is assumed to
be a core image file produced after executing obJfil; the default for
corfi! is core. A' , -" in place of corfit forces sdb to ignore any core
image file. The colon separated directory list is used to locate the
source files used to build objfil.

It is useful to know that at any time there is a current line and current
file. They are initially set to the first line in main(). The current line
and file may be changed with the source file examination commands.

Names of variables are written just as they are in C programs. Vari­
ables local to a procedure may be accessed using the form
procedure. variable. If no procedure name is given, the procedure
containing the current line is used by default.

You can also refer to structure members as variable .member , pointers
to structure members as variable->member and array elements as
variable [number]. Pointers may be de-referenced by using the form
pointer [0]. You can also use combinations of these forms.

It is also possible to specify a variable by its address. You can use all
forms of integer constants which are valid in C programs, so that
addresses and numbers may be input in decimal, octal, or hexade­
cimal.

Line numbers in source programs are referred to as filename :number
or procedure :number. In either case the number is relative to the
beginning of the file. If no procedure or filename is given, the current
file is used by default. If no number is given, the first line of the
named procedure or file is used.

There are several kinds of commands available to the sdb debugger as
described in the following sections. sdb commands appear in boldface
type. For all commands, items in brackets ([]) are optional.

October 10, 1988 Page 1

SDB (CP) SDB (CP)

Data Examination Commands

t Displays a stack trace.

T Prints the top line of the stack trace.

variable /[clm]

Displays the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. If I and m are omitted,
sdb chooses a format suitable for the variable type as declared in the
program. The length specifiers are:

b One byte

h Two bytes (half word)

Four bytes (long word)

Legal values for
mare:

c Character

d Decimal

u Unsigned decimal

o Octal

x Hexadecimal

f 32 bit single precision floating point

g 64 bit single precision floating point

s Assumes variable is a string pointer and
prints characters starting at the address
pointed to by the variable.

a Prints characters starting at the variable's
address.

Disassembles with numeric/symbolic addresses.

Page 2

The length specifiers are only effective with the formats c, d, u, 0,

and x. If one of these formats is specified and I is omitted, the
length defaults to two bytes. If a numeric length specifier is used

October 10, 1988

SDB (CP) SDB (CP)

for the fonnat variable then that many characters are printed. Oth­
erwise, successive characters are printed until either a null byte is
reached or 128 characters are printed.

linenumber? [elm]

Prints the value at the address from a.out or i space given by
linen umber , according to the fonnat 1m. The default fonnat is i.

variable =[lm]
linellumber=[lm]
number=[lm]

Prints the address of variable or linen umber in the fonnat specified by
1m . If no fonnat is given, then Ix is used. The last variant of this com­
mand provides a convenient way to convert between decimal, octal,
and hexadecimal. A single number cannot be used as a line number
because the command would be ambiguous; the proc :number fonn
must be used.

variable !value

Sets variable to the given value. The value may be any valid C
expression.

x Displays the machine registers and current machine-language
instruction.

X Displays the current machine-language instruction.

Source File Examination Commands

e Displays current procedure and filenames.

e procedure

Sets the current file and current line to the file containing procedure.

efilename

Sets the current file and current line number to the first line in filename

/reglliar expression [I]

Searches forward from the current line for a line containing a string
matching regular expression as in ed(C).

October 10, 1988 Page 3

SDB (CP) SDB (CP)

?regular expression [?]

Searches backward from the current line for a line containing a string
matching regular expression as in ed(C).

p Prints the current line.

z Prints the current line followed by the next nine lines. Sets the
current line to the last line printed.

w Creates a window by printing ten lines around the current line.

number

Sets the current line to the given line number and displays the line.

[count]+

Advances the current line by count lines and display the new line. If
count is omitted, the default is one line.

[count]-

Retreats from the current line by count lines and display the new line.
If count is omitted, the default is one line.

Execution Control Commands

L Load the program to be debugged but do not run it. If you wish to
examine the initial values of memory locations before the program
has started to run, or if you wish to disassemble portions of the pro­
gram without actually running it, you must first enter the L com­
mand.

[count] r [args]
[count] R

Runs the program with the given arguments. The r command
with no arguments reuses the previous arguments to the program
while the R command runs the program with no arguments. An
argument beginning with < or> causes redirection for the stan­
dard input or output respectively. If count is given, it specifies
the number of breakpoints to be ignored.

[linen umber] c [count]
[linen umber] C [count]

Page 4

Continues after a breakpoint or interrupt. If count is given, it
specifies the number of breakpoints to be ignored. C continues
with the signal which caused the program to stop reactivated

October 10, 1988

SDB (CP) SDB (CP)

and c ignores it. If a line number is specified then a temporary
breakpoint is placed at the line and execution is continued. The
breakpoint is deleted when the command finishes.

linenumber g [count]
Continues after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of break­
points to be ignored.

[count] s
Single steps. Runs the program through count lines. If no count
is given then the program is run for one line.

[count] S
Single steps but steps through subroutine calls.

[count] i
Machine-language single steps. Runs the program through
count machine-language instructions. If no count is given then
one machine-language instruction is executed.

[count] I
Machine-language single steps, but steps through call instruc­
tions.

variable$m [count]
Single steps (as with s) until the specified location is modified
with a new value. Count specifies the number of instructions to
step; if omitted, count is effectively infinity. The variable must
be accessible from the current procedure. Since this command
is performed by software, it can be very slow.

[level] v
Switches verbose mode on and off, for use with single stepping
with S, s, or m. If level is omitted or is zero, then just the
current source file and/or subroutine name is printed when either
changes. If level is one, each C source line is printed before it is
executed; if level is two, each assembler line statement is also
printed. The v command turns verbose mode off if it is on for
any level.

k Kills the debugged program.

procedure(arg 1 ,arg2 , ...)
procedure(argl,arg2, ...)/m

Executes the named procedure with the given arguments. The
second form causes the value to be returned by the procedure to
be printed according to format m. If no format is given, it
defaults to d.

October 10, 1988 Page 5

SDB (CP) SDB (CP)

[linen umber] b [commands]
Sets a breakpoint at the given line. If a procedure name without
a line number is given (e.g., "main"), a breakpoint is placed at
the first line in the procedure. If no linen umber is given, a
breakpoint is placed at the current line. If no commands are
given then execution stops just before the breakpoint and con­
trol is returned to sdb. Otherwise the commands are executed
when the breakpoint is encountered and execution continues.
Multiple commands are specified by separating them with semi­
colons.

B Prints a list of the currently active breakpoints.

[linenumber] d
Deletes a breakpoint at the given line. If no linenumber is
given, then the breakpoints are deleted interactively: each
breakpoint location is printed and a line is read from the stan­
dard input. If the line begins with a y or d, then the breakpoint
is deleted.

D Deletes all breakpoints.

Prints the last executed line. Makes the last executed line the
current line.

linen umber a
Announces. If linenumber is of the form proc :number or
number, the command effectively does a linenumber b l. If
linen umber is of the form proc:, the command effectively does a
proc: b T.

Miscellaneous Commands

!command
Interprets command. Command interpreter executes command.

newline
Advances the current line by one line and prints the new current
line if the previous command printed a source line. Displays the
next memory location if the previous command displayed a
memory location.

Ctrl-D
Scrolls. Prints the next ten lines of instructions, source or data
depending on which was printed last.

< filename

Page 6

Reads commands from filename until the end of file is reached,
and then continues to accept commands from standard input.
When sdb is told to display a variable by a command in such a
file, the variable name is displayed along with the value. This

October 10, 1988

SDB (CP) SDB (CP)

command may not be nested; the redirection character «) may
not appear as a command in a file.

"string
Prints the given string. The C escape sequences of the form
\character are recognized, where character is a non-numeric
character.

q Exits the debugger.

Debugger Commands

V Prints the version number.

Q Prints a list of procedures and files being debugged.

Files

a.out
core

See Also

adb(CP), a.out(F), cc(CP), core(F), Id(CP)

Notes

In order to make use of the symbolic debugging features of sdb, the
program being debugged must have been compiled with the -Zi
option. sdb does not use the ordinary symbol table infonnation in an
a.out file and has limited facilities for debugging at the machine code
level. If you have to debug a program that has been compiled without
using the -Zi option, it may be preferable to use adb.

October 10, 1988 Page 7

SIZE (CP) SIZE (CP)

Name

size - Prints the size of an object file.

Syntax

size [object ...]

Description

size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also

a.out(F)

October 10, 1988 Page 1

SPLINE (CP) SPLINE (CP)

Name

spline - Interpolates smooth curve.

Syntax

spline [option] ...

Description

spline takes pairs of numbers from the standard input as abscissas and
ordinates of a function. It produces a similar set, which is approxi­
mately equally spaced and includes the input set, on the standard out­
put. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

-a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, or is assumed to
be 1 if next argument is not a number.

·k The constant k used in the boundary value computation

y~ =ky~ , ... ,y~ =ky~-l

is set by the next argument. By default k = o.
-n Spaces output points so that approximately n intervals occur

between the lower and upper x limits. (Default n = 100.)

-p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Nor­
mally these limits are calculated from the data. Automatic
abscissas start at lower limit (default 0).

Diagnostics

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

Notes

A limit of 1000 input points is silently enforced.

October 10, 1988 Page 1

STRINGS (CP) STRINGS (CP)

Name

strings - Finds the printable strings in an object file.

Syntax

strings [-] [-0] [-number] file .. ,

Description

strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline or
a null character. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -0 flag is given, then each
string is preceded by its decimal offset in the file. If the -number flag
is given then number is used as the minimum string length rather than
4.

strings is useful for identifying random object files and many other
things.

See Also

hd(C), od(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

October 10, 1988 Page 1

STRIP (CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip [-MNSdehrstx] file ...

Description

strip removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and link editor. This is useful for saving
space after a program has been debugged.

If name is an archive file, strip will remove the local symbols from
any a.out format files it finds in the archive. Certain libraries, such as
those residing in /lib, have no need for local symbols. By deleting
them, the size of the archive is decreased and link editing performance
is increased.

There are several options for use with strip:

-M Strip all memory image segments.
-N Strip all non-memory image segments.
-S Strip the segment table only.
-h Strip header and extended header.
-e Strip extended header.
-d Strip data and data relocation.
-t Strip text and text relocation.
-r Strip all relocation except x.out's "short form."
-x Strip all relocation.
-s Strip symbol table.

The effect of strip is the same as use of the -s option of ld.

Files

/tmp/stm * Temporary file

See Also

Id(M)

October 10, 1988 Page 1

TIME (CP) TIME (CP)

Name

time - Times a command.

Syntax

time command

Description

The given command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times(S)

October 10, 1988 Page 1

TSORT(CP) TSORT(CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort [file]

Description

tsort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input file.
If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also

10rder(CP)

Diagnostics

Odd data: There is an odd number of fields in the input file.

Notes

The sort algorithm is quadratic, which can be slow if you have a large
input list.

October 10, 1988 Page 1

UNGET(CP) UNGET(CP)

Name

unget - Undoes a previous get of an sees file.

Syntax

unget [-rSID] [-s] [-n] files

Description

unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unger behaves as though each file
in the directory were specified as a named file, except that nonSeeS
files and unreadable files are silently ignored. If a name of - is given,
the standard input is read with each line being taken as the name of an
sees file to be processed.

Options apply independently to each named file.

-rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta".) The use of this option is necessary only if two
or more versions of the same sees file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is uncertain, or
if it is necessary and omitted on the command line.

-s Suppresses the printout, on the standard output, of the
intended delta's SID.

-n Causes the retention of the file which would normally
be removed from the current directory.

See Also

delta(CP), get(CP), sact(CP), help(C)

Diagnostics

Use he/p(C) for explanations.

October 10, 1988 Page I

VAL (CP) VAL (CP)

Name

val - Validates an sees file.

Syntax

val-

val [-s] [-rSID] [-mname] [-ytype] files

Description

val detennines if the specified file is an sees file meeting the charac­
teristics specified by the optional argument list. Arguments to val
may appear in any order. The arguments consist of options, which
begin with a -, and named files.

val has a special argument, -, which causes reading of the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-s

-rSID

-mname

-ytype

October 10, 1988

The presence of this argument silences the diagnos­
tic message nonnally generated on the standard out­
put for any error that is detected while processing
each named file on a given command line.

The argument value SID (SeeS IDentification
String) is an sees delta number. A check is made
to detennine if the SID is ambiguous (e. g., r1 is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g., r1.0 or r1.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to deter­
mine if it actually exists.

The argument value name is compared with the
sees %M% keyword infile.

The argument value type is compared with the
sees % Y% keyword in file .

Page 1

VAL (CP) VAL (CP)

The 8-bit code returned by val is a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving from left to right)
set bits are interpreted as follows:

bit ° = Missing file argument

bit 1 = Unknown or duplicate option

bit 2 = Corrupted sees file

bit 3 = Can't open file or file not sees
bit 4 = SID is invalid or ambiguous

bit 5 = SID does not exist

bit 6 = %Y%, -y mismatch

bit 7 = %M%, -m mismatch

Note that val can process two or more files on a given command line
and in tum can process multiple command line (when reading the
standard input). In these cases an aggregate code is returned; a logical
OR of the codes generated for each command line and file processed.

See Also

admin(CP), delta(CP), get(CP), prs(CP), help(C)

Diagnostics

Use help (C) for explanations.

Notes

val can process up to 50 files on a single command line.

Page 2 October 10, 1988

XREF (CP) XREF (CP)

Name

xref - Cross-references C programs.

Syntax

xref [file ...]

Description

xref reads the named files or the standard input if no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...

Function definition is indicated by a plus sign (+) preceding the line
number.

See Also

cref(CP)

October 10, 1988 Page 1

XSTR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax

xstr [-c] [-] [file]

Description

xstr maintains a file strings into which strings in component parts of a
large program are hashed. These strings are replaced with references
to this common area. This serves to implement shared constant
strings, most useful if they are also read-only.

The command

xstr -c name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[number]) for some
number. An appropriate declaration of xstr is prepended to the file.
The resulting C text is placed in the file x.c, to then be compiled. The
strings from this file are placed in the strings data base if they are not
there already. Repeated strings and strings which are suffices of exist­
ing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
xs.c declaring the common xstr space can be created by a command of
the form

xstr -c name I name2 name3 ...

This xS.c file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) saving
space and swap overhead.

xstr can also be used on a single file. A command

xstr name

creates files x.c and xS.c as before, without using or affecting any
strings file in the same directory.

It may be useful to run xstr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed. xstr reads from its standard

October 10, 1988 Page 1

XSTR (CP) XSTR (CP)

input when the argument - is given. An appropriate command
sequence for running xstr after the C preprocessor is:

cc -E name.c I xstr -c -
cc -c x.c
mv x.o name.o

xstr does not touch the file strings unless new items are added, thus
make can avoid remaking xs.o unless truly necessary.

Files

strings Data base of strings

x.c Massaged C source

xs.c C source for definition of array "xstr"

/tmp/xs* Temp file when "xstr name" doesn't touch strings

See Also

mkstr(CP)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Notes

If a string is a suffix of another string in the data base, but the shorter
string is seen first by xstr , both strings will be placed in the data base
when just placing the longer one there will do.

Page 2 October 10, 1988

YACC (CP) YACC (CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

yacc [-vd] [-S[amsrnilw]num] grammar

Description

yacc converts a context-free grammar into a set of tables for a simple
automaton which executes an LR(l) parsing algorithm. The grammar
may be ambiguous; specified precedence rules are used to break ambi­
guities.

The output file, y.tab.c, must be compiled by the C compiler to pro­
duce a program yyparse. This program must be loaded with the lexi­
cal analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user;
lex (CP) is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define
statements that associate the yacc-assigned "token codes" with the
user-declared "token names". This allows source files other than
y .tab.c to access the token codes.

There is a series of flags that control internal yacc values. Each flag
must be given separately and with its own number value. The flags
are:

Flag Controls Default
-Sanum Number of actions per rule 4000

-Smnum Optimizer space 5200

-Ssnum Number of states 600

-Srnum Number of rules 300

-Snnum Number of nonterminal symbols 200

-Sinum Number of identifiers and literals 4000

October 10, 1988 Page 1

YACC (CP) YACC (CP)

-Slnum Number of lookahead sets 450

-Swnum Number of working sets 250

Files

y.output

y.tab.c

y.tab.h Defines for token names

yacc.tmp, yacc.acts Temporary files

/usr/lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

Diagnostics

The number of reduce-reduce and shift-reduce conflicts is reported on
the standard output; a more detailed report is found in the y.output
file. Similarly, if some rules are not reachable from the start symbol,
this is also reported.

Notes

Because filenames are fixed, at most one yacc process can be active
in a given directory at a time.

Page 2 October 10, 1988

Replace this Page
with Tab Marked:

System
Services (S)

/
'~

Contents

Systems Services (S)

a641,164a
abort
abs
access
acct
alarm
assert
atof, atoi, atol
bessel, jO, j 1, jn,
yO,yl,yn
brkctl
bsearch
chdir
chmod
chown
chroot
chsize
clock
close
conY, toupper,
tolower, toascii
creat
creatsem
ctermid
ctime, local time,
gmtime, asctime,
tzset
ctype, isalpha,
isupper, islower,
isdigit, isxdigit,
isalnum, isspace,
ispunct, isprint,
isgraph, iscntrl,
isascii, tolower,
toupper, toascii
curses
cuserid

Converts between long integer and base 64 ASCII.
Generates an lOT fault.
Returns an integer absolute value.
Determines accessibility of a file.
Enables or disables process accounting.
Sets a process' alarm clock.
Helps verify validity of program.
Converts ASCII to numbers.

Performs Bessel functions.
Allocates data in a far segment.
Performs a binary search.
Changes the working directory.
Changes mode of a file.
Changes the owner and group of a file.
Changes the root directory.
Changes the size of a file.
Reports CPU time used.
Closes a file descriptor.

Translates characters.
Creates a new file or rewrites an existing one.
Creates an instance of a binary semaphore.
Generates a filename for a terminal.

Converts date and time to ASCII.

Classifies or converts characters.
Performs screen and cursor functions.
Gets the login name of the user.

dbminit, fetch,
store, delete,
firstkey, nextkey
defopen, defread
dial
directory,
closedir
drand48,
erand48, Irand48,
nrand48,
mrand48,
jrand48, icong48,
seed48,

dup,dup2
ecvt, fcvt, gcvt
end, etext, edata
erf, erfc
ev block
ev -close
ev count
ev -flush
ev=getdev
ev getemask
ev=gindev
ev init
ev_open
evyop
ev read
ev resume
ev -setemask
ev-suspend
execl, execv,
execle, execve,
execlp, execvp
execseg
exit, _exit
exp, log, pow,
sqrt,loglO

fclose, mush
fcntl
ferror, feof,
clear err , fileno

ii

Perfonns database functions.
Reads default entries.
Establishes an out-going tenninalline connection.

Perfonns directory operations.

Generates unifonnaly distributed pseudo-random
numbers
Duplicates an open file descriptor.
Perfonns output conversions.
Last locations in program.
Error function and complementary error function.
Wait until the queue contains an event.
Close the event queue and all associated devices.
Returns the number of events currently in the queue.
Discard all events currently in the queue.
Gets a list of devices feeding an event queue.
Return the current event mask.
include/exclude devices for event input.
Invokes the event manager.
Opens an event queue for input.
Pop the next event off the queue.
Read the next event in the queue.
Restart a suspended queue.
Sets event mask.
Suspends an event queue.

Executes a file.
Makes a data region executable.
Tenninates a process.

Perfonns exponential, logarithm, power, square root
functions.
Closes or flushes a stream.
Controls open files.

Detennines stream status.

floor, fabs, ceil,
fmod

fopen, freopen,
fdopen
fork
fread, fwrite
frexp, Idexp,
modf

fseek, ftell,
rewind
ftok
ftw
gamma
getc, getchar,
fgetc, getw
getcwd
getdents

getenv
getgrent,
getgrgid,
getgrnam,
setgrent,
endgrent
getlogin
getopt
getpass
getpid, getpgrp,
getppid
getpw
getpwent,
getpwuid,
getpwnam,
setpwent,
endpwent
gets, fgets
getuid, geteuid,
getgid, getegid

getut, getutent,
getutid, getutline,
pututline,
setutent,
endutent,

Perfonns absolute value, floor, ceiling and remainder
functions.

Opens a stream.
Creates a new process.
Perfonns buffered binary input and output.

Splits floating-point number into a mantissa and an
exponent.

Repositions a file pointer in a stream.
Standard interprocess communication package.
Walks a file tree.
Perfonns log gamma function.

Gets character or word from a stream.
Get the pathname of current working directory.
Read directory entries and put in a file system
independent fonnat.
Gets value for environment name.

Get group file entry.
Gets login name.
Gets option letter from argument vector.
Reads a password.

Gets process, process group, and parent process IDs.
Gets password for a given user ID.

Gets password file entry.
Gets a string from a stream.

Gets real user, effective user, real group, and
effective group IDs.

iii

utmpname
hsearch, hcreate,
hdestroy
hypot
intro

ioctl
kill
13tol, ltol3
link
lock
lockf
locking
logname
Isearch, lfind
Iseek
malloc, free,
realloc, calloc
malloc, free,
realloc, calloc,
mall opt, mallinfo
matherr
memccpy,
memchr,
memcmp,
memcpy, memset
mknod
mktemp
monitor
mount
msgctl
msgget
msgop
nap
nice
nlist
open
opendir, readdir,
telldir, seekdir,
rewinddir,
opensem
pause
perror,
sys _ errlist,
sys_nerr, errno

IV

Accesses utmp file entry.

Manages hash search tables.
Determines Euclidean distance.
Introduces system services, library routines and error
numbers.
Controls character devices.
Sends a signal to a process or a group of processes.
Converts between 3-byte integers and long integers.
Links a new filename to an existing file.
Locks a process in primary memory.
Provide semaphores and record locking on files.
Locks or unlocks a file region for reading or writing.
Finds login name of user.
Performs linear search and update.
Moves read/write file pointer.

Allocates main memory.

Allocates
Error-handling function.

Memory operations.
Makes a directory, or a special or ordinary file.
Makes a unique filename.
Prepares execution profile.
Mounts a file system.
Provides message control operations.
Gets message queue.
Message operations.
Suspends execution for a short interval.
Changes priority of a process.
Gets entries from name list.
Opens file for reading or writing.

Opens a semaphore.
Suspends a process until a signal occurs.

pipe
plock
pop en, pclose
printf, fprintf,
sprintf
proctl
profil
ptrace
putc, putchar,
fputc, putw
putenv
putpwent
puts, fputs
qsort
rand, srand
rdchk
read
regex, regcrnp
regexp
sbrk,brk
scanf, fscanf,
sscanf
sdenter, sdleave
sdget, sdfree
sdgetv, sdwaitv
select
sernctl
sernget
sernop
setbuf, setvbuf
setjrnp, longjrnp
setpgrp
setuid, setgid
shrnctl
shrnget
shrnop
shutdn
signal
sigsern
sin, cos, tan, asin,
acos, atan, atan2
sinh, cosh, tanh
sleep

Sends system error messages.
Creates an interprocess pipe.
Lock process, text, or data in memory.
Initiates I/O to or from a process.

Formats output.
Controls active processes or process groups.
Creates an execution time profile.
Traces a process.

Puts a character or word on a stream.
Changes or adds value to environment.
Writes a password file entry.
Puts a string on a stream.
Performs a quicker sort.
Generates a random number.
Checks to see if there is data to be read.
Reads from a file.
Compiles and executes regular expressions.
Regular expression compile and match routines.
Changes data segment space allocation.

Converts and formats input.
Synchronizes access to a shared data segment.
Attaches and detaches a shared data segment.
Synchronizes shared data access.
synchronous I/O multiplexing
Controls semaphore operations.
Gets set of semaphores.
Performs semaphore operations.
Assigns buffering to a stream.
Performs a nonlocal "go to".
Sets process group ID.
Sets user and group IDs.
Controls shared memory operations.
Gets a shared memory segment.
Performs shared memory operations.
Flushes block I/O and halts the CPU.
Specifies what to do upon receipt of a signal.
Signals a process waiting on a semaphore.

Perfom1s trigonometric functions.
Performs hyperbolic functions.
Suspends execution for an interval.

v

sputl, sgetl
ssignal, gsignal
stat, fstat
statfs, fstatfs
stdio
stime
string, strcat,
strncat, strcmp,
strncmp, strcpy,
strncpy,
strchr, strrchr,
strpbrk, strspn,
strcspn, strtok,
strdup,
strtod, atof
strtol, atol, atoi
swab
swapadd

sync
sysi86
system
terminfo
tgetent, tgetnum,
tgetftag, tgetstr,
tgoto, tputs
time, ftime
times
tmpfile
tmpnam,
tempnam
tsearch, tfind,
tdelete, twalk
ttyname, isatty
ttyslot
uadmin

ulimit
umask
umount
uname
ungetc
unlink
ustat

vi

Accesses long integer data in a machine-independent
Implements software signals.
(Jets file status.
(Jet file system infonnation.
Perfonns standard buffered input and output.
Sets the time.

Converts a string to a double-precision number.
Converts string to integer.
Swaps bytes.
Specifies additional devices for paging and
swapping.
Updates the super-block.
machine specific functions
Executes a shell command.
tenninal description database.

Perfonns tenninal functions.
(Jets time and date.
Gets process and child process times.
Creates a temporary file.

Creates a name for a temporary file.

Manages binary search trees.
Finds the name of a tenninal.
Finds the slot in the utmp file of the current user.
Administrative control for rebooting the system and
remounting the
(Jets and sets user limits.
Sets and gets file creation mask.
Unmounts a file system.
(Jets name of current XENIX system.
Pushes character back into input stream.
Removes directory entry.
Gets file system statistics.

utime
varargs
vprintf, vfprintf,
vsprintf
wait
waits em,
nbwaitsem

write
xlist, fxlist

Sets file access and modification times.
variable argument list

Prints fonnatted output of a varargs argument list.
Waits for a child process to stop or tenninate.

A waits and checks access to a resource governed by
a semaphore.
Writes to a file.
Gets name list entries from files.

vii

INTRO (S) INTRO (S)

Name

intro - Introduces system services, library routines and error numbers.

Syntax

#include <errno.h>

Description

This section describes all system services. System services include all
routines or system calls that are available in the operating system ker­
nel. These routines are available to a C program automatically as part
of the standard library libc. Other routines are available in a variety
of libraries. On 8086/88, and 286 systems, versions for Small, Middle,
and Large model programs are provided (that is, three of each library).
On 386 systems, Small, Middle, and Large programs for 286 processes
and Small model programs for 386 processes are provided.

To use routines in a program that are not part of the standard library
libc, the appropriate library must be linked. This is done by specify­
ing -I name to the compiler or linker, where name is the name listed
below. For example -I m , and -I term cap are specifications to the
linker to search the named libraries for routines to be linked to the
object module. The names of the available libraries are:

c The standard library containing all system call interfaces,
Standard I/O routines, and other general purpose services.

m The standard math library.

term cap Routines for accessing the termcap data base describing ter­
minal characteristics.

curses Screen and cursor manipulation routines.

dbm Data base management routines.

x The standard XENIX library.

Most services that are part of the operating system kernel have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details. An error number is also made avail­
able in the external variable errno. errno is not cleared on successful
calls, so it should be tested only after an error has been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their names

October 10, 1988 Page 1

INTRO (S) INTRO (S)

as defined in <errno.h>.

EPERM Not owner:
Typically, this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory:
This error occurs when a filename is specified and the file should
exist but doesn't, or when one of the directories in a pathname does
not exist.

3 ESRCH No such process:
No process can be found corresponding to that specified by pid in
kill or ptrace .

4 EINTR Interrupted system call:
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter­
rupted system call returned this error condition.

5 EIO I/O error:
Some physical I/O error. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIONo such device or address:
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long:
An argument list longer than 5,120 bytes is presented to a member
of the exec family.

8 ENOEXEC Exec format error:
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
(see a.out(F».

9 EBADF Bad file number:
Either a file descriptor refers to no open file, or a read (respectively
write) request is made to a file which is open only for writing
(respectively reading).

10 ECHILD No child processes:

Page 2

A wait was executed by a process that had no existing or
unwaited-for child processes.

October 10, 1988

INTRO (S) INTRO (S)

11 EAGAIN No more processes:
A fork failed because the system's process table is full or the user
is not allowed to create any more processes.

12 ENOMEM Not enough space:
During an exec, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap
space during a fork.

13 EACCES Permission denied:
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address:
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required:
A nonblock file was mentioned where a block device was required,
e.g., in mount.

16 EBUSY Device busy:
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text seg­
ment). It will also occur if an attempt is made to enable account­
ing when it is already enabled.

17 EEXIST File exists:
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link:
A link to a file on another device was attempted.

19 ENODEV No such device:
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory:
A nondirectory was specified where a directory is required, for
example, in a path prefix or as an argument to chdir(S).

21 EISDIR Is a directory:
An attempt to write on a directory.

22 EINV AL Invalid argument:
An invalid argument (e.g., dismounting a nonmounted device;
mentioning an undefined signal in signal or kill; reading or writing

October 10, 1988 Page 3

INTRO (S) INTRO (S)

a file for which lseek has generated a negative pointer). Also set
by the math functions described in the (S) entries of this manual.

23 ENFILE File table overflow:
The system's table of open files is full and temporarily no more
opens can be accepted.

24 EMFILE Too many open files:
No process may have more than 60 file descriptors open at a time.

25 ENOTTY Not a character device
The device requested could not be opened for character I/O.

26 ETXTBSY Text file busy:
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
for writing a pure-procedure program that is being executed.

27 EFBIG File too large:
The size of a file exceeded the maximum file size (1 ,082,201,088
bytes) or VLIMIT.

28 ENOS PC No space left on device:
During a write to an ordinary file, there is no free space left on the
device.

29 ESPIPE Illegal seek:
An lseek was issued to a pipe.

30 EROFS Read-only file system:
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links:
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe:
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

33 ED OM Math arg out of domain of func:
The argument of a function in the math package is out of the
domain of the function.

34 ERANGE Math result not representable:

Page 4

The value of a function in the math package is not representable
within machine precision.

October 10, 1988

INTRO (S) INTRO (S)

35 EUCLEAN File system needs cleaning:
An attempt was made to mount(S) a file system whose super-block
is not flagged clean.

36 EDEADLOCK Would deadlock:
A process' attempt to lock a file region would cause a deadlock
between processes vying for control of that region.

36 EDEADLK Would deadlock:
A process' attempt to lock a file region would cause a deadlock
between processes vying for control of that region.

37 ENOTNAM Not a name file:
A creatsem (S), opensem(S), waitsem(S), or sigsem(S) was issued
using an invalid semaphore identi fier.

38 ENAVAIL Not available:
An opensem(S), waitsem(S) or sigsem(S) was issued to a sema­
phore that has not been initialized by a call to creatsem (S). A sig­
sem was issued to a semaphore out of sequence; i.e., before the
process has issued the corresponding waitsem to the semaphore.
An nbwaitsem was issued to a semaphore guarding a resource that
is currently in use by another process. The semaphore on which a
process was waiting has been left in an inconsistent state when the
process controlling the semaphore exits without relinquishing con­
trol properly; i.e., without issuing a waitsem on the semaphore.

39 EISNAM A name file:
A name file (semaphore, shared data, etc.) was specified when not
expected.

43 ENOMSG No message of desired type:
An attempt was made to receive a message of a type that does not
exist on the specified message queue; see msgop(S).

44 EIDRM Identifier removed:
This error is returned to a process that resumes execution due to
the removal of an identifier from the file system's name space; see
msgctl (S), semctl (S), and shmctl (S).

45 ENOLCK No locks available:
The system's lock table was full, and a file locking or unlocking
operation was attempted which would have created an additional
lock table entry.

Definitions

Process ID

Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from ° to 30,000.

October 10, 1988 Page 5

INTRO (S) INTRO (S)

Parent Process ID

A new process is created by a currently active process; see fork(S).
The parent process ID of a process is the process ID of its creator.

Process Group ID

Each active process is a member of a process group that is identified
by a positive integer called the process group ID. This ID is the pro­
cess ID of the group leader. This grouping permits the signaling of
related processes; see kill (S).

Process Group Leader

A process group leader is any process whose process group ID is the
same as its process ID. Any process may become a group leader by
calling setgrp(S). A process inherits the process group ID of the pro­
cess that created it, seefork(S) and exec (S).

TTY Group ID

Each active process can be a member of a terminal group that is
identified by a positive integer called the TTY group ID. This group­
ing is used to terminate a group of related process upon termination of
one ofthe processes in the group; see exit(S) and signal(S).

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and a real group ID that are set to
the real user ID and real group ID, respectively, of the user responsible
for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process' real
user ID and real group ID respectively, unless the process or one of its
ancestors evolved from a file that had the set-user-ID bit or set-group
ID bit set; see exec (S).

Page 6 October 10, 1988

INTRO (S) INTRO (S)

Super-User

A process is recognized as a super-user process and is granted special
privileges if its effective user ID is o.

Special Processes

The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as procO and proc 1.

procO is the scheduler. procJ is the initialization process (in it).
Proc 1 is the ancestor of every other process in the system and is used
to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an ordi­
nary file, special file or directory.

These characters may be selected from the set of all character values
excluding 0 (null) and the ASCII code for a slash (/).

Note that it is generally unwise to use *, ?, [, or] as part of filenames
because of the special meaning attached to these characters by the
shell. Likewise, the high order bit of the character should not be set.

Pathname and Path Prefix

A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names separated
by slashes, optionally followed by a filename. A filename is a string
of 1 to 14 characters other than the ASCII slash and null, and a direc­
tory name is a string of 1 to 14 characters (other than the ASCII slash
and null) naming a directory.

If a pathname begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working
directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null pathname is treated as if
it named a nonexistent file.

Directory

October 10, 1988 Page 7

INTRO (S) INTRO (S)

Directory entries are called links. By convention, a directory contains
at least two links, . and '" referred to as "dot" and "dot-dot" respec­
tively. Dot refers to the directory itself and dot-dot refers to its parent
directory.

Root Directol)' and Current Working Directory

Each process has a concept of a root directory and a current working
directory for the purpose of resolving pathname searches associated
with it. A process' root directory need not be the root directory of the
root file system. See chroot (ADM) and chroot (S).

File Access Permissions

Read, write, and execute/search permissions on a file are granted to a
process if one or more of the following are true:

The process' effective user ID is super-user.

The process' effective user ID matches the user ID of the owner of
the file and the appropriate access bit of the "owner" portion
(0700) of the file mode is set.

The process' effective user ID does not match the user ID of the
owner of the file, and the process' group ID matches the group of
the file, and the appropriate access bit of the "group" portion
(070) of the file mode is set.

The process' effective user ID does not match the user ID of the
owner of the file, and the process' effective group ID does not
match the group ID of the file, and the appropriate access bit of the
"other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied. See chmod(C)
and chmod(S).

Message Queue Identifier

A message queue identifier (msqid) is a unique pOSitIve integer
created by a msgget(S) system call. Each msqid has a message queue
and a data structure associated with it. The data structure is referred
to as msqid _ ds and contains the following members:

Page 8

struct
ushort
ushort
ushort
ushort
time_t

ipc_perm msg_perm;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_Irpid;
msg_stime;

/* operation permission struct */
/* number of msgs on q */
/* max number of bytes on q */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* last msgsnd time */

October 10, 1988

INTRO (S)

time_t msg_rtime;
time_t msg_ctime;

INTRO (S)

/* last msgrcv time */
/* last change time */
/* Times measured in sees since*/
/* 00:00:00 GMT, Jan. 1, 1970 */

msg_perm is an ipc_perm structure that specifies the message opera­
tion permission (see below). The structure includes the following
members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w permission */

msg qnum is the number of messages currently on the queue.
msg - qbytes is the maximum number of bytes allowed on the queue.
msg)spid is the process ID of the last process that performed a
msgsnd operation. msg_lrpid is the process ID of the last process that
performed a msgrcl' operation. msg_stime is the time of the last
msgsnd operation, msg_rtime is the time of the last msgrcv operation,
and msg ctime is the time of the last msgctl (S) operation that
changed a member in the above structure.

Message Operation Permissions

In the msgop(S) and msgctl (S) system call descriptions, the permis­
sion required for an operation is given as "{ token} ", where "token"
is the type of permission needed. It is interpreted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, write by group
Read, write by others

Read and write permissions on a msqid are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.uid or
msg_perm.cuid in the data structure associated with msqid, and
the appropriate bit of the "user" portion (0600) of
msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.llid
or msg_perm.cllid and the effective group ID of the process
matches msg_perm.gid or msg_perm.cgid and the appropriate bit
of the" group" portion (060) of msg_perm.mode is set.

October 10, 1988 Page 9

INTRO (S) INTRO (S)

The effective user ID of the process does not match msg_perm.uid
or msgyerm.cuid and the effective group ID of the process does
not match msgyerm.gid or msgyerm.cgid and the appropriate
bit of the "other" portion (06) ofmsgyerm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created by
a semget(S) system call. Each semid has a set of semaphores and a
data structure associated with it. The data structure is referred to as
semid _ ds and contains the following members:

struct
ushort
time_t
time_t

ipc_perm sem_perm;
sem_nsems;
sem_otime;
sem_ctime;

j* operation permission struct *j
j* number of sems in set *j
j* last operation time * /
/* last change time */
/* Times measured in secs since * /
/* 00:00:00 GMT, Jan. 1,1970 */

sem_perm is an ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the follow­
ing members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* ria permission */

The value of sem _ nsems is equal to the number of semaphores in the
set. Each semaphore in the set is referenced by a positive integer
referred to as a "sem_num" . Sem_num values run sequentially from
o to the value of sem nsems minus 1. sem otime is the time of the
last semop(S) operatIon, and sem ctime IS the time of the last
semctl (S) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

j* semaphore value */
/* pid of last operation */
/* # awaiting semval > cval */
j* # awaiting semval = 0 *j

semval is a non-negative integer. sempid is equal to the process ID of
the last process that performed a semaphore operation on this sema­
phore. semncnt is a count of the number of processes that are
currently suspended awaiting this semaphore's semval to become
greater than its current value. semzcnt is a count of the number of
processes that are currently suspended awaiting this semaphore's

Page 10 October 10, 1988

INTRO (S) INTRO (S)

semval to become zero.

Semaphore Operation Permissions

In the semop(S) and semetl (S) system call descriptions, the pennis­
sion required for an operation is given as "{ token} ", where "token"
is the type of pennission needed and is interpreted as follows:

00400
00200
00060
00006

Read by user
Alter by user
Read, alter by group
Read, alter by others

Read and alter pennissions for a semid are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches sem _perm.uid or
sem _perm.euid in the data structure associated with semid, and
the appropriate "user" portion (0600) bit of sem _perm.mode is
set.

The effective user ID of the process does not match sem yerm.uid
, or sem _perm.euid and the effective group ID of the process
matches sem _perm.gid or sem _perm.egid and the appropriate bit
of the "group" portion (060) ofsemyerm.mode is set.

The effective user ID of the process does not match sem _perm.uid
or sem _perm.euid and the effective group ID of the process does
not match sem _perm.gid or sem _perm.egid and the appropriate
bit of the "other" portion (06) of sem _perm.mode is set.

Otherwise, the corresponding pennissions are denied.

Shared Memory Identifier

A shared memory identifier (shmid) is a unique pOSItive integer
created by a shmget(S) system call. Each shmid has a segment of
memory (referred to as a shared memory segment) and a data structure
associated with it. The data structure is referred to as shmid ds and
contains the following members: -

struct
int
ushort
ushort
short
time_t
time_t

ipc_penn shm_penn;
shm_segsz;
shm_cpid;
shm_Ipid;
shm_nattch;
shm_atime;
shm_dtime;

October 10, 1988

/* operation pennission struct */
/* size of segment */
/* creator pid */
/* pid of last operation */
/* number of current attaches * /
/* last attach time */
/* last detach time */

Page 11

INTRO (S) INTRO (S)

/* last change time * /
/* Times measured in secs since*/
/* 00:00:00 GMT, Jan. 1, 1970 */

shm.J>erm is an ipc_perm structure that specifies the shared memory
operation permission (see below). The structure includes the follow­
ing members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w permission */

shm _ segsz specifies the size of the shared memory segment.
shm _ epid is the process ID of the process that created the shared
memory identifier. shm _lpid is the process ID of the last process that
performed a shmop(S) operation. shm natteh is the number of
processes that currently have this segment attached. shm _ atime is the
time of the last shmat operation. shm _ dtime is the time of the last
shmdt operation, and shm ctime is the time of the last shmctl (S)
operation that changed one of the above structure members.

Shared Memory Operation Permissions

In the shmop(S) and shmctl (S) system call descriptions, the permis­
sion required for an operation is given as "{token}", where "token"
is the type of permission needed. It is interpreted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, write by group
Read, write by others

Read and write permissions on a shmid are granted to a process if one
or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm .J>erm.nid or
shm .J>erm.enid in the data structure associated with shmid and
the appropriate bit of the "user" portion (0600) of
shm.J>erm.mode is set.

The effective user ID of the process does not match shm .J>erm.nid
or shm _perm.enid and the effective group ID of the process
matches shm .J>erm.gid or shm _perm.egid and the appropriate bit
of the" group" portion (060) of shm .J>erm.mode is set.

Page 12 October 10, 1988

INTRO (S) INTRO (S)

The effective user ID of the process does not match shm yerm.uid
or shm _perm.euid and the effective group ID of the process does
not match shm yerm.gid or shm yerm.egid and the appropriate
bit of the "other" portion (06) of shm yerm.mode is set.

Otherwise, the corresponding permissions are denied.

See Also

c1ose(S), ioctl(S), open(S), pipe(S), read(S), write(S)

October 10, 1988 Page 13

A64L (S) A64L (S)

Name

a641, 164a - Converts between long integer and base 64 ASCII.

Syntax

long a641 (s)
char *s;

char *164a (I)
long I;

Description

These routines are used to maintain numbers stored in base 64 ASCII.
This is a notation by which long integers can be represented by up to
six characters; each character represents a "digit" in a radix 64 nota­
tion.

The characters used to represent "digits" are • for 0, / for 1,0 through
9 for 2 through 11, A through Z for 12 through 37, and a through z for
38 through 63.

a641 takes a pointer to a null-terminated base 64 representation and
returns a corresponding long value. 164a takes a long argument and
returns a pointer to the corresponding base 64 representation.

Notes

The value returned by 164a is a pointer into a static buffer, the con­
tents of which are overwritten by each call.

October 10, 1988 Page 1

ABORT(S) ABORT (S)

Name

abort - Generates an lOT fault.

Syntax

int abort ()

Description

abort first closes all open files, if possible, then causes an I/O trap sig­
nal (SIGIOT) to be sent to the calling process. This usually results in
termination with a core dump.

abort can return control if the calling process is set to catch or ignore
the SIGIOT signal; see signal (S).

See Also

adb(CP), exit(S), signal(S)

Diagnostics

If an aborted process returns control to the shell (sh(C», the shell usu­
ally displays the message "abort - core dumped".

October 1 0, 1988 Page 1

ABS(S)

Name

abs - Returns an integer absolute value.

Syntax

int abs (i)
int i;

Description

abs returns the absolute value of its integer operand.

See Also

Jabs in floor(S)

Notes

ABS(S)

If the largest negative integer supported by the hardware is given, the
function returns it unchanged.

October 10, 1988 Page 1

ACCESS (S) ACCESS (S)

Name

access - Detennines accessibility of a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

path points to a pathname naming a file. access checks the named file
for accessibility according to the bit pattern contained in amode, using
the real user ID in place of the effective user ID, and the real group ID
in place of the effective group ID. The bit pattern for amode can be
fanned by adding any combination of the following:

04 Read
02 Write
01 Execute (search)
00 Check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) pennission is requested for a null
pathname. [ENOENT]

The named file does not exist. [ENOENT]

Search pennission is denied on a component of the path prefix.
[EACCES]

Write access is requested for a file on a read-only file system.
[EROFS]

Write access is requested for a pure procedure (shared text) file
that is being executed. [ETXTBSY]

Pennission bits of the file mode do not pennit the requested access.
[EACCES]

path points outside the process' allocated address space.
[EFAULT]

access checks the pennissions for the owner of a file by checking the
"owner" read, write, and execute mode bits. For members of the
file's group, the "group" mode bits are checked. For all others, the

October 10, 1988 Page 1

ACCESS(S) ACCESS(S)

"other" mode bits are checked.

Return Value

If the requested access is permitted, a value of 0 is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S), stat(S)

Example

The following is some sample code for accessO.

main(argc, argv)
int argc;
char **argv;
{
int i;

char *s, *lognameO;

if (argc ! = 2) {
/* give error msg if incorrect args */
printf(, 'usage: access path \n' ');
exit(1);

s = 10gnameO; /* get users login */

printf(' '%s has the following access for %s:\n",s,argv[1]);

Page 2

if «access(argv[1],O» == 0)
printf(' , file exists\n");

else
perror(argv [1]);

if «access(argv[1],l» == 0)
printf(' 'execute: permission \n' ');

else
perror(' 'execute' ');

if «access(argv[1],4» == 0)
printf(' 'read: permission \n' ');

else
perror(' 'read' ');

if «access(argv[1],2» == 0)

October 10, 1988

ACCESS (S)

Notes

printf("write permission\n");
else

perror(' 'write:' ');

ACCESS (S)

The super-user (root) may access any file, regardless of permission
settings.

October 10, 1988 Page 3

ACCT(S) ACCT(S)

Name

acct - Enables or disables process accounting.

Syntax

#include <sys/types.h>

int acct (path)
char *path;

Description

acct is used to enable or disable the system's process accounting rou­
tine. If the routine is enabled, an accounting record will be written on
an accounting file for each process that terminates. A process can be
terminated by a call to exit or by receipt of a signal which it does not
ignore or catch; see exit (S) and signal (S). The effective user ID of the
calling process must be super-user to use this call.

path points to the pathname of the accounting file. The accounting
file format is given in acct (F).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
[EPERM]

An attempt is being made to enable accounting when it is already
enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of the accounting file's pathname do not
exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

mode permission is denied for the named accounting file.
[EACCES]

October 10, 1988 Page 1

ACCT (S) ACCT(S)

The named file is a directory. [EACCES]

The named file resides on a read-only file system. [EROFS]

path points to an illegal address. [EFAULT]

Return Value

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

accton(ADM), acctcom(ADM), acct(F)

Page '2 October 10, 1988

ALARM(S)

Name

alarm - Sets a process' alarm clock.

Syntax

unsigned alarm (sec)
unsigned sec;

Description

ALARM (S)

alarm sets the calling process' alarm clock to sec seconds. After sec
"real-time" seconds have elapsed, the alarm clock sends a SIGALRM
signal to the process; see signal (S).

Although alarm does not wait for the signal after setting the alarm
clock, pause(S) may be used to make the calling process wait.

Alarm requests are not stacked; successive calls reset the calling pro­
cess' alarm clock.

If sec is 0, any previously made alarm request is canceled.

jork(S) sets the alarm clock of a new process to 0. a process created
by exec (S) inherits the time left on the old process's alarm clock.

Return Value

alarm returns the amount of time previously remaining in the calling
process' alarm clock.

See Also

pause(S), signal(S)

Example

The following program sets the alarm and then waits to send the sig­
nal.

October 10, 1988 Page 1

ALARM(S) ALARM(S)

Page 2

#include <stdio.h>
#inelude <etype.h>

maine arge,argv)
int arge;
ehar *argv[];
{

int sees;
ehar *arg_ptr;
extern unsigned alarm();

if (arge != 2)
{

fprintf(stderr, "Usage: alarm <seeonds>\n");
exit(1);

}
/* Cheek to see that argument is a valid number */
arg_ptr = argv [1];
while (*arg_ptr != '\0')
if (lisdigit«int) *arg_ptr++»
{

}

fprintf(stderr, "Not a valid number\n' ');
exit(l);

sees = atoi(argv[l]); /* eonvert to an integer */
if (sees> 0)
{

}

printf("Alarm set for %d seeonds\n\n",sees);
alarm«unsigned) sees);

else
exit(O);

pauseO; /* wait until SIGALRM is sent */

Oetober 10, 1988

ASSERT(S)

Name

assert - Helps verify validity of program.

Syntax

#include <stdio.h>
#include <assert.h>

void assert (expression)
int expression;

Description

ASSERT(S)

This macro is useful for putting diagnostics into programs under
development. When it is executed, if expression is false (zero), it
displays:

Assertion failed: expression, file name, line nnn

on the standard error file and aborts. name is the source filename and
nnn is the source line number of the assert statement.

Notes

To suppress calls to assert, use the -DNDEBUG option (see cpp(CP)),
or insert the preprocessor control statement, #define NDEBUG before
the #include <assert.h> statement when compiling the program.

See Also

abort(S), cpp(CP)

October 10, 1988 Page 1

ATOF (S)

Name

atof, atoi, atol - Converts ASCII to numbers.

Syntax

double at of (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long atQI (nptr)
char *nptr;

Description

ATOF (S)

These functions convert a string pointed to by nptr to floating, integer,
and long integer numbers respectively. The first unrecognized charac­
ter ends the string.

ato! recognizes a string of the fonn:

[+ I -] digits[. digits][el E [+ I -] digits]

where the digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are optional.
Either e or E may be used to mark the beginning of the exponent.

atoi and atol recognize strings of the fonn:

[+ I -] digits

where the digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are optional.

See Also

scanf(S)

Notes

There are no provisions for overflow.

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

BESSEL (S)

Name

bessel, jO, j 1, jn, yO, yl, yn - Perfonns Bessel functions.

Syntax

#include <math.h>

double jO (x)
double x;

double j 1 (x)
double x;

double jn (n, x)
double x;

double yO (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

Description

BESSEL (S)

jO andjl return Bessel functions of x of the fIrst kind of orders ° and 1
respectively. jn returns the Bessel function of x of the first kind of
order n. The value of x must be positive.

yO and y 1 return Bessel functions of x of the second kind of orders °
and 1 respectively. yn returns the Bessel function of x of the second
kind of order n.

See Also

matherr(S)

Diagnostics

Negative arguments cause yO, yl , and yn to return a -HUGE value
and to set errno to EDOM. In addition, a message indicating DOMAIN
error is displayed on the standard error output. Arguments too large in
magnitude cause jO, j 1, and y 1 to return zero and to set errno to
ERANGE. In addition, a message indicating TLOSS error is displayed

October 10, 1988 Page 1

BESSEL (S) BESSEL (S)

on the standard error output. These error-handling procedures can be
changed with the matherr(S) function.

Notes

These routines must be linked by using the -1m linker option.

Page 2 October 10, 1988

BRKCTL (S)

Name

brkctl - Allocates data in a far segment.

Syntax

#include <sys/brk.h>

char far *brkctl(command, increment, ptr)
int command;
long increment;
char far *ptr;

Description

BRKCTL (S)

The brkctl system call allocates and deallocates memory in additional
data segments in small and middle model programs. In order for the C
compiler to make use of the return values in small and middle model
programs, brkctl must be declared to return a far pointer. To enable
the 'far' keyword for small model C programs, the -Me option to the
compiler must be used. Middle model C programs require the -Mme
option.

command is either BR_ARGSEG, BR_NEWSEG, or BR_IMPSEG.

increment is a signed long increment. If positive, it must be less than
64K; if negative, its absolute value must be less than the sum of the
total memory in all far segments plus the amount allocated in the near
segment after process creation.

ptr is used only when command is BR _ ARGSEG.

If increment is positive, brkctl returns a far. pointer to the base of at
least increment number of bytes of memory (see box on next page).

If the command is BR _ IMPSEG, and a negative increment causes one
or more segments to be freed, the 'segment in question' (see the
Return Values section) is the last remaining segment that was not
freed. BR_IMPSEG implies the use of the last data segment. Unless
the process is small or middle model and currently has only one data
segment, a positive increment that would overflow the last data seg­
ment causes a new segment to be allocated.

If the command is BR_ARGSEG, the increment may not be more
negative than the size of the segment. The third argument (ptr) , is
assumed to be a far pointer in all models; the offset portion is never
used.

October 10, 1988 Page 1

BRKCTL (S) BRKCTL (S)

If the command is BR NEWSEG, the increment may not be negative
at all. Any memory allocated is guaranteed to be at the base of a new
segment.

Return Value

brkctf 0 almost always returns a far pointer to the base of the affected
region, (char far *)-1 on error.

When the increment is greater than 0, the return value is a pointer to
the base of the newly allocated memory.

When the increment is less than or equal to 0, the return value is a
pointer to the first illegal byte in the segment in question (usually the
base of the deallocated memory). If that segment is full (exactly 64K
bytes), the return value will be a pointer to the base of the next seg­
ment (which mayor may not exist).

Command Increment

BR_ARGSEG 0
BR_ARGSEG other

BR_NEWSEG 0

BR_NEWSEG other

BR_IMPSEG 0

BR_IMPSEG other

See Also

Ptr

<valid far ptr>
<valid far ptr>

Action

report on segment
increment specified
segment

allocate new segment,
size =0
allocate new segment,
size = increment

report on last segment;
may free up empty
segment(s).

increment last segment;
on large model (or
small and middle model
with multiple data seg­
ments) may allocate
new segment.

cc(CP), Id(CP), machine(M), malloc(S), sbrk(S)

Page 2 October 10, 1988

BRKCTL(S) BRKCTL (S)

Example

The example of brkctl below uses the BR_NEWSEG parameter to
allocate space for 20,000 integers in a far data segment (on a 286
machine) and fills this memory with the integers from 1 to 20,000.
Remember to compile this program with the "-Me" option.

#include <sys/brk.h>

#define FNULL (int far*)O

#ifdef M_I386
#define FAILURE (int *)-1

#else
#define FAILURE (int far*)-l

#endif

mainO
{

int i,j;

#ifdef M_I386
int *fp, *brkctIO;

#else
int far *fp, far *brkctlO; /* both fars are necessary */

#endif

fp=brkctl(BR_NEWSEG,(long)sizeof(int) *20000,FNULL);
if (fp==FAILURE){

Notes

perror(' 'brkctl failed' ');
exit(1);

}
for (i=0;i<20000;++i)

fp[i]=i+ 1;
for (i=0;k20000;++i)

printf("%d\n",fp[i]);

The brkctl system call should be used only for dynamically allocating
additional segments in small and middle model programs. All other
uses should be avoided in favor of sbrk(S), mal/oc(S), and other stan­
dard UNIX system services. The functionality of brkctl may change in
future releases.

brkctl is currently available only on protected mode XENIX.

In all models, the 'near' data segment must be the first data segment.

October 10, 1988 Page 3

BRKCTL (S) BRKCTL (S)

brkctl calls with BR IMPSEG and a negative increment that would
affect a shared data segment are refused.

Page 4 October 10, 1988

BSEARCH (S)

Name

bsearch - Perfonns a binary search.

Syntax

#include <search.h>

char *bsearch (key, base, nel, width, compar)
char *key;
char *base;
unsigned nel, width;
int (*compar)O;

Description

BSEARCH (S)

bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating the location at
which a datum may be found. The table must be previously sorted in
increasing order according to a provided comparison function, cam­
par. key is a pointer to the datum to be located in the table. base is a
pointer to the elements at the base of the table. nel is the number of
elements in the table. width is the size of an element in bytes. campar
is the name of the comparison routine. It is called with two arguments
which are pointers to the elements being compared. The routine must
return an integer less than, equal to, or greater than zero, depending on
whether the first argument is to be considered less than, equal to, or
greater than the second.

See Also

hsearch(S), Isearch(S), qsort(S), tsearch(S)

Example

The following example program demonstrates the use of the bsearch
function. The program's input should be a list of words, one per line,
sorted in ASCII collating order. Following the list should be a blank
line, then another list of words, one to a line. The program will use
the bsearch function to look for each word from the second list in the
first list. The word is printed if found, or the message "not found" is
printed if the word does not appear in the first list.

October 10, 1988 Page 1

BSEARCH(S) BSEARCH(S)

#inc1ude <stdio.h>
#inc1ude <search.h>

#define TAB SIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

} ;
struct node table[TABSIZE]; /* table to be searched */

mainO
{

}
/*

*/

struct node *node_ptr, node;
int i, node_comparee); /* routine to compare 2 nodes */
char stcspace[256]; /* space to read string into */

/* load table */

while (gets(str_space) != NULL) {
if (stcspace[O] == '\0')

break;
table[i].string = (char *)strdup(stcspace);
table[i].length = strlen(str_space);
++i;

node.string = stcspace;
while (scanf("%s", node.string) !=EOF) {

node_ptr = (struct node *)bsearch«char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr !=NULL) {

(void)printf("string = %20s, length = %d\n",
node_ptr->string, node_ptr->length);

} else {
(void)printf("not found: %s\n", node. string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

int

Page 2

node_compare(node 1 ,node2)
struct node *node1, *node2;

return strcmp(node1->string, node2->string);

October 10, 1988

BSEARCH(S) BSEARCH(S)

Diagnostics

If the key cannot be found in the table, a NULL (0) pointer is returned.

Notes

The pointers to the key and the element at the base of the table should
be of type pointer-to-element and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values being
compared. Although declared as type pointer-to-character, the value
returned should be cast into pointer-to-element.

October 10, 1988 Page 3

CHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int chdir (path)
char *path;

Description

CHDIR (S)

path points to the pathname of a directory. chdir causes the named
directory to become the current working directory, the starting point
for path searches for pathnames not beginning with I.

chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

A component of the pathname is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the pathname.
[EACCES]

path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chroot(S)

October 10, 1988 Page 1

CHMOD (S)

Name

chmod - Changes mode of a file.

Syntax

int chmod (path, mode)
char *path;
int mode;

Description

CHMOD (S)

path points to a pathname naming a file. chmod sets the access per­
mission portion of the named file's mode. It sets the access permis­
sion portion according to the bit pattern contained in mode.

Access permission bits for mode can be formed by adding any combi­
nation of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
00040 Read by group
00020 Write by group
00010 Execute (or search) by group
00004 Read by others
00002 Write by others
00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process must
match the owner of the file or must be super-user.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the effective
group ID of the process does not match the group ID of the file, mode
bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, when its last user ter­
minates, mode bit 01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file. Thus, when
the next user executes the file, the text need not be read from the file
system but can simply be swapped in, saving time. Many systems
have relatively small amounts of swap space, and the same-text bit
should be used sparingly, if at all.

October 10, 1988 Page 1

CHMOD (S) CHMOD (S)

chmod will fail and the file mode will be unchanged if one or more of
the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chown(S), mknod(S)

Page 2 October 10, 1988

CHOWN(S) CHOWN(S)

Name

chown - Changes the owner and group of a file.

Syntax

int chown (path, owner, group)
char *path;
int owner, group;

Description

path points to a pathname naming a file. The owner ID and group ID
of the named file are set to the numeric values contained in owner and
group respectively.

Only processes with an effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will
be cleared.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file, and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

October 10, 1988 Page 1

CHOWN(S) CHOWN(S)

Return Value

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S)

Page 2 October 10, 1988

CHROOT(S)

Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char *path;

Description

CHROOT(S)

path points to a pathname naming a directory. chroot causes the
named directory to become the root directory, the starting point for
path searches for pathnames beginning with I. The user's working
directory is unaffected by the chroot system call.

To change the root directory, the effective user ID of the process must
be super-user.

The " .. " entry in the root directory is interpreted to mean the root
directory itself. Thus," .. " cannot be used to access files outside the
root directory.

chroot will fail and the root directory will remain unchanged if one or
more of the following are true:

Any component of the pathname is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chdir(S), chroot(ADM)

October 10, 1988 Page 1

CHSIZE (S)

Name

chsize - Changes the size of a file.

Syntax

int chsize (fildes, size)
int tildes;
long size;

Description

CHSIZE (S)

fi/des is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call. chsize changes the size of the file associated with
the file descriptor fildes to be exactly size bytes in length. The routine
either truncates the file, or pads it with an appropriate number of
bytes. If size is less than the initial size of the file, then all allocated
disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit (S) is enforced when chsize is
called, rather than on subsequent writes. Thus chsize fails, and the file
size remains unchanged if the new changed file size would exceed the
ulimit.

Return Value

Upon successful completion, a value of ° is returned. Otherwise, the
value -1 is returned and errno is set to indicate the error.

See Also

createS), dupeS), lseek(S), open(S), pipe(S), ulimit(S)

Notes

In general if chsize is used to expand the size of a file, when data is
written to the end of the file, intervening blocks are filled with zeros.
In a few rare cases, reducing the file size may not remove the data
beyond the new end-of-file. This routine must be linked with the
linker option -Ix.

October 10, 1988 Page 1

CLOCK(S) CLOCK (S)

Name

clock - Reports CPU time used.

Syntax

long clock ()

Description

clock returns the amount of CPU time (in microseconds) used since
the fIrst call to clock. The reported time equals the sum of user and
system times of the calling process and any terminated child processes
for which wait or system (S) were executed.

The resolution of the clock is machine dependent. Refer to the
manual page machine (HW) for the clock resolution on your system.

See Also

machine(HW), system(S), times(S), waiteS)

Notes

The microsecond value returned by clock is compatible with systems
that have CPU clocks with much higher resolution. Because of this,
the value returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

October 10, 1988 Page 1

CLOSE (S)

Name

close - Closes a file descriptor.

Syntax

int close (fildes)
int fildes;

Description

CLOSE (S)

fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call. close closes the file descriptor indicated by fi/des .
All outstanding record locks on the file indicated by fildes that are
owned by the calling process are removed.

close will fail if fi/des is not a valid open file descriptor. [EBADF]

Return Value

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

See Also

createS), dupeS), exec(S), fcntl(S), open(S), pipe(S)

October 10, 1988 Page 1

CONV (S)

Name

conv, toupper, tolower, toascii - Translates characters.

Syntax

#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int tolower (c)
int c;
int toascii (c)
int c;

Description

CONV(S)

to upper and tolower convert the argument c to a letter of opposite
case. Arguments may be the integers -1 through 255 (the same values
returned by getc (S». If the argument of to upper represents a lower­
case letter, the result is the corresponding uppercase letter. If the
argument of tolower represents an uppercase letter, the result is the
corresponding lowercase letter. All other arguments are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted argument values and are fas­
ter. to upper requires a lowercase letter as its argument; its result is
the corresponding uppercase letter. t%wer requires an uppercase
letter as its argument; its result is the-corresponding lowercase letter.
All other arguments cause unpredictable results.

toascii converts integer values to ASCII characters. The function
clears all bits of the integer that are not part of a standard ASCII char­
acter; it is intended for compatibility with other systems.

See Also

ctype(S)

October 10, 1988 Page 1

CONV(S) CONV(S)

Notes

Because _toupper and _t%wer are implemented as macros, they
should not be used where unwanted side effects may occur. Removing
the toupper and t%wer macros with the #Undef directive causes
the corresponding library functions to be linked instead. This allows
any arguments to be used without worry about side effects.

Page 2 October 10, 1988

CREAT(S) CREAT(S)

Name

creat - Creates a new file or rewrites an existing one.

Syntax

int creat (path, mode)
char *path;
int mode;

Description

creat creates a new ordinary file or prepares to rewrite an existing file
named by the patbname pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner
are unchanged. Otherwise, the file's owner ID is set to the process'
effective user ID, the file's group ID is set to the process' effective
group ID, and the access permission bits (i.e., the low-order 12 bits of
the file mode) are set to the value of mode. mode may have the same
values as described for chmod(S). creat will then modify the access
permission bits as follows:

All bits set in the process' file mode creation mask are cleared.
See umask(S).

The "save text image after execution bit" is cleared. See
chmod(S).

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned and the file is open for writing, even if the mode
does not permit writing. The file pointer is set to the beginning of the
file. The file descriptor is set to remain open across exec system calls.
See fcntZ (S). No process may have more than 60 files open simultane­
ously. A new file may be created with a mode that forbids writing.

creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The pathname is null. [ENOENT]

The file does not exist and the directory in which the file is to be
created does not permit writing. [EACCES]

October 10, 1988 Page 1

CREAT(S) CREAT(S)

The named file resides or would reside on a read-only file system.
[EROFS]

The file is a pure procedure (shared text) file that is being exe­
cuted. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

Sixty file descriptors are currently open. [EMFILE]

path points outside the process' allocated address space.
[ENOSPC]

The directory to contain the file cannot be extended. [EFAULT]

The system file table is full. [ENFll..E]

Return Value

Upon successful completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

See Also

close(S), dup(S), Iseek(S), open(S), read(S), umask(S), write(S)

Notes

open(S) is preferred to creat.

Page 2 October 10, 1988

CREATSEM (S)

Name

creatsem - Creates an instance of a binary semaphore.

Syntax

int creatsem(sem name,mode)
char *sem name;
int mode;-

Description

CREATSEM (S)

creatsem defines a binary semaphore named by sem _name to be used
by waitsem(S) and sigsem(S) to manage mutually exclusive access to
a resource, shared variable, or critical section of a program. creatsem
returns a unique semaphore number, sem_num, which may then be
used as the parameter in waitsem and sigsem calls. Semaphores are
special files of 0 length. The filename space is used to provide unique
identifiers for semaphores. mode sets the accessibility of the sema­
phore using the same format as file access bits. Access to a semaphore
is granted only on the basis of the read access bit; the write and exe­
cute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such as waitsem or sigsem, by creatsem which initializes it to some
value, or by opensem which opens the semaphore for use by a process.
Synchronizing primitives are guaranteed to be executed without
interruption once started. These primitives are used by associating a
semaphore with each resource (including critical code sections) to be
protected.

The process controlling the semaphore should issue:

sem_num = creatsem(' 'semaphore", mode);

to create, initialize, and open the semaphore for that process. All
other processes using the semaphore should issue:

sem_num = opensem(' 'semaphore' ');

to access the semaphore's identification value. Note that a process
cannot open and use a semaphore that has not been initialized by a
call to creatsem, nor should a process open a semaphore more than
once in one period of execution. Both the creating and opening
processes use waitsem and sigsem to use the semaphore sem _ num.

October 10, 1988 Page 1

CREAI'SEM (S) CREAI'SEM (S)

Compatibility

creatsern can only be used to define XENIX version 3.0 semaphores,
not XENIX System V semaphores.

See Also

opensem(S), waitsem(S), sigsem(S)

Diagnostics

creatsem returns the value -1 if an error occurs. If the semaphore
named by sern _name is already open for use by other processes, errno
is set to EEXIST. If the file specified exists but is not a semaphore
type, errno is set to ENOTNAM. If the semaphore has not been initial­
ized by a call to creatsem, errno is set to ENAVAIL.

Notes

After a creatsem you must do a waitsem to gain control of a given
resource.

This feature is a XENIX specific enhancement and may not be present
in all UNIX implementations. This function must be linked with the
linker option -Ix.

Page 2 October 10, 1988

CTERMID (S)

Name

ctennid - Generates a filename for a tenninal.

Syntax

#include <stdio.h>

char *ctermid(s)
char *s;

Description

CTERMID (S)

ctermid returns a pointer to a string that, when used as a filename,
refers to the controlling tenninal of the calling process.

If (int)s is zero, the string is stored in an internal static area, the con­
tents of which are overwritten at the next call to ctermid, and the
address of which is returned. If (int)s is nonzero, then s is assumed to
point to a character array of at least L _ ctermid elements; the string is
placed in this array and the value of s is returned. The manifest con­
stant L ctermid is defined in <stdio.h>.

Notes

The difference between ctermid and ttyname (S) is that ttyname must
be given a file descriptor and it returns the actual name of the tenninal
associated with that file descriptor, while ctermid returns a magic
string (/dev/tty) that will refer to the tenninal if used as a filename.
Thus ttyname is useless unless the process already has at least one file
open to a tenninal.

See Also

ttyname(S)

October 10, 1988 Page 1

CTIME (S) CTIME (S)

Name

ctime, localtime, gmtime, asctime, tzset - Converts date and time to
ASCII.

Syntax

char *ctime (clock)
long *clock;

#include <time.h>
#include <sys/types.h>

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

void tzset ()

extern long timezone;
extern long altzone;
extern int daylight;
extern char *tzname[2];

Description

etime converts a time pointed to by clock (such as returned by
time (S» into ASCII and returns a pointer to a 26-character string in the
following form:

Sun Sep 1601:03:52 1973\n\0

If necessary, fields in this string are padded with spaces to keep the
string a constant length.

loealtime and gmtime return pointers to structures containing the time
as a variety of individual quantities. These quantities give the time on
a 24-hour clock, day of month (1-31), month of year (0-11), day of
week (Sunday = 0), year (since 1900), day of year (0-365), seconds
from GMT (East < 0), a flag that is nonzero if there is a summer time
(daylight saving time) rule for the locality, and the name of the
timezone. loealtime corrects for the time zone and possible summer
time. gmtime converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

October 10, 1988 Page 1

CTIME (S) CTIME (S)

asetime converts the times returned by loealtime and gmtime to a 26-
character ASCII string and returns a pointer to this string.

The structure declaration for tm is defined in lusr/include/time.h.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (e.g., in Eastern Stan­
dard Time (EST), timezone is 5*60*60); similarly, the external long
variable altzone contains the difference, in seconds, between GMT and
local summer time (e.g., in Eastern Daylight Time (EDT), altzone is
4*60*60); the external integer variable daylight is nonzero if and only
if summer time conversion should be applied.

If an environment variable named TZ is present, asetime uses the con­
tents of the variable to override the default time zone as determined
by /time 0 (see time (S)). The value of TZ is described in detail on the
tz(M) manual page. The effects of setting TZ are thus to change the
values of the external variables timezone, altzone, and daylight. In
addition, the time zone names contained in the external variable

char *tzname[2] = {"EST", "EDT"};

are set from the environment variable. The rule for when to change
between standard time and summer time can be specified in the TZ
string. If a rule is not specified, the standard U.S.A. Daylight Savings
Time conversion is applied. The program knows about the peculiari­
ties of this conversion in 1974 and 1975 and the change in 1987. The
function tzset sets the external variables from TZ ; it is called by ase­
time and may also be called explicitly by the user.

See Also

environ(M), getenv(S), time(S), tz(M)

Notes

The return values point to static data, whose content is overwritten by
each call. .

Changes to TZ are immediately effective, (i.e. if a process changes the
TZ variable, the next call to a etime (S) routine returns a value based
on the new value of the variable).

Page 2 October 10, 1988

CTYPE (S) CTYPE (S)

Name

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii, tolower, toupper, toascii -
Classifies or converts characters.

Syntax

#include <ctype.h>

int isalpha (c)
int c;

Description

These macros classify ASCII-coded integer values by table lookup.
Each returns nonzero for true, zero for false. isascii is defined on all
integer values; the rest are defined only where isascii is true and on
the single non-ASCII value EOF (see stdio(S)).

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

October 10, 1988

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a digit [0-9]

c is a hexidecimal digit [0-9], [A-F] or [a-f]

c is an alphanumeric

c is a space, tab, carriage return, newline, vertical
tab, or form feed

c is a punctuation character (neither control nor
alphanumeric)

c is a printing character, octal 40 (space) through
octal 176 (tilde)

c is a printing character, like isprint except false for
space

Page 1

CTYPE(S)

iscntrl

isascii

CTYPE (S)

c is a delete character (octal 177) or ordinary con­
trol character (less than octal 40).

c is an ASCII character, code less than 0200

If the argument to any of these macros is not in the domain of the
function, the result is undefined.

The following macros convert to ASCII-coded integer values. tolower
and toupper are implemented as macros, but can be undefined to get
non-macro versions from libe. Non-alphabetic values passed to
toupper and tolower will be returned unchanged.

tolower
If c is an uppercase letter, it is returned as a lowercase letter

toupper
If c is a lowercase letter, it is returned as an uppercase letter

toascii
c is truncated to the lowest 7 bits

See Also

ascii(M)

Page 2 October 10, 1988

CURSES (S)

Name

curses - Performs screen and cursor functions.

Syntax

#include <curses.h>
WINDOW *curscr, *stdscr;

cc -DM_TERMCAPfilellame -ltcap -Itermlib

Description

CURSES (S)

These routines give the user a method of updating screens with rea­
sonable optimization. They keep an image of the current screen.
curscr. The user modifies this image by modifying the standard
screen, stdscr, or by setting up a new screen. The reFesh and
wrefresh routines make the current screen look like the modified one.
In order to initialize the routines, the routine initscr must be called
before any of the other routines that deal with windows and screens
are used.

The routines are linked with the linker options -ltcap and -ltermlib.
Programs using these routines must be compiled with M _ TERMCAP
defined.

Functions

int addch(ch)
unsigned char ch;

int addstr(str)
char *str;

Adds a character to stdscr

Adds a string to stdscr

int box(win, vert,hor)
WINDOW *win;
unsigned char vert, hor;

Draws a box around a window

int c1earO
Clears stdscr

int c1earok(win,state)
WINDOW *win;
bool state;

Sets clear flag for win

October 10, 1988 Page 1

CURSES (S)

int clrtobotO
Clears to bottom on stdscr

int clrtoeolO
Clears to end of line on stdscr

int crmodeO
Sets cbreak mode

int delchO
Deletes character from stdscr

int deletelnO
Deletes line from stdscr

int delwin(win)
WI:\DOW *win~

int echoO

int endwinO

int eraseO

int getchO

int getstr(str)
char *str;

int gettmodeO

Delete Ifill

Sets echo mode

Tel111inates screen processing

Erase stdscr

Gets a char through stdscr

Gets a string through stdscr

Gets tty modes

int getyx(win,y ,x)
WINDOW *win;
int y,x;

Gets current (y,x) position of will

int inchO

CURSES (S)

Gets char at current (y,x) coordinates

WINDOW *initscrO

int insch(c)
unsigned char c;

Page 2

Initializes screens

Inserts character in stdscr

October 10, 1988

CURSES (S)

int insertlnO
Inserts blank line in stdscr

int leaveok(win,state)
WINDOW *win~
bool state~

Sets leave tlag for }rill

int longname(termbuf,name)
char *termbuf, *name~

int moye(~',x)
int ~'.x~

Gets long name from fcrm!JI(j'

Moves to (y.x) on stdscr

int mYaddch(y,x,ch)
int \",X~
unsLigned char ch~

Moves to (y.x) and adds character
ell

int mYaddstr(y ,x,str)
int \",X~
chaLr *str~

Moves to (y.x) and adds string
sf!"

int n1YcurOast~' ,Iash.new~' ,newx)
int lash', lash, newy, newx~

L Moves cursor the from (lasty.lastx)
to (nev,:y.newx)

int mydelch(y,x)
int ~',x~

int mYgetch(~' ,x)
int y,x~

Moves to (y.x) and deletes
character from stdscr

Moves to (y.x) and gets a char
through stdscr

int mvgetstr(y ,x,str)
int v,x~
chaLr *str~

int mvinch(v,x)
inty,x; L

October 10. 1988

Moves to (y.x) and gets a string
through stdscr

Moves to (y.x) and gets char at

CURSES (S)

Page 3

CURSES (S)

current coordinates

int mvinsch(y,x,c)
int y,x;
unsigned char c;

Moves to (y,x) and inserts
character in stdscr

int mvwaddch(win, y,x,ch)
WINDOW *win;
int y,x;
unsigned char ch;

Moves to (y,x) in win and
adds character ch

int mvwaddstr(win,y ,x,str)
WINDOW *win;
int y,x;
char *str;

Moves to (y ,x) in win
and adds string str

int mvwdelch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win
and deletes the character

int mvwgetch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and
gets a character

int mvwgetstr(win,y ,x,str)
WINDOW *win;
int y,x;
char *str;

Moves to (y,x) in win
and gets a string

int mvwin(win,y,x)
WINDOW *win;
int y,x;

Moves upper comer of win to (y,x)

Page 4

CURSES (S)

October 10, 1988

CURSES (S)

int mvwinch(win,y,x)
WINDOW *win;
int y,x;

Moves to (y,x) in win and
gets character at current coordinates

int mvwinsch(win,y,x,c)
WINDOW *win;
int y,x;
unsigned char c;

Moves to (y,x) in win and
inserts character

WINDOW *newwin(lines,cols,begin _y ,begin _x)
int lines, cols, begin y, begin x;

Creates a new window

int nlO
Sets new line mapping

int nocrmodeO
Unsets cbreak mode

int noechoO
Unsets echo mode

int nonlO
Unsets newline mapping

int norawO
Unsets raw mode

int overlay(winl,win2)
WINDOW *winl, *win2;

Overlays win} on win2

int overwrite(winl,win2)
WINDOW *winl, *win2;

Overwrites win} on top of win2

int printw(fmt,argl,arg2, ...)
char *fmt;

Prints args on stdscr

int rawO
Sets raw mode

int refreshO
Makes current screen look like stdscr

October 10, 1988

CURSES (S)

Page 5

CURSES (S)

int resettyO
Resets tty flags to stored value

int savettyO
Stored current tty flags

int scanw(fmt,argl,arg2, ...)
char *fmt;

Scans for args through stdscr

int scrolI(win)
WINDOW *win;

Scrolls win one line

int scrollok(win,state)
WINDOW *win;
bool state;

Sets scroll flag

int setterm(name)
char *name;

Sets tenn variables for name

int standendO
Clears standout mode of stdscr

int standoutO

CURSES (S)

Sets standout mode for characters in subsequent
output to stdscr

WINDO W *su bwin(win,lines,cols,begin _y ,begin_x)
WINDOW *win;
int lines, cols, begin y, begin x;

Creates a subwindow in win

int touchwin(win)
WINDOW *win;

Prepares win for complete update on
next refresh.

int unctrl(ch)
unsigned char ch;

Printable version of ch

int waddch(win,ch)
WINDOW *win;
unsigned char ch;

Adds char to win

Page 6 October 10, 1988

CURSES (S)

int waddstr(win,str)
WINDOW *win;
char *str;

Adds string to win

int wclear(win)
WINDOW *win;

Clear win

int wclrtobot(win)
WINDOW *win;

Clears to bottom of win

int wclrtoeol(win)
WINDOW *win;

Clears to end of line on win

int wdelch(win)
WINDOW *win;

Deletes current character from win

int wdeleteln(win)
WINDOW *win;

Deletes line from win

int werase(win)
WINDOW *win;

Erase win

int wgetch(win)
WINDOW *win;

Gets a char through win

int wgetstr(win,str)
WINDOW *win;
char *str;

int winch(win)
WINDOW *win;

Gets a string through win

Gets char at current (y,x) in win

int winsch(win,c)
WINDOW *win;
unsigned char c;

Inserts character c in win

int winsertln(win)
WINDOW *win;

Inserts a blank line in win

October 10, 1988

CURSES (S)

Page 7

CURSES(S)

int wmove(win,y,x)
WINDOW *win;
int y,x;

Sets new (y,x) coordinates

int wprintw(win,fmt,argl,arg2, ...)
WINDOW *win;
char *fmt;

Print args on win

int wrefresh(win)
WINDOW *win;

Makes screen look like win

int wscanw(win,fmt,argl,arg2, ...)
WINDOW *win;
char *fmt;

Scans for args through win

int wstandend(win)
WINDOW *win;

Clears standout mode for win

int wstandout(win)
WINDOW *win;

Diagnostics

Sets standout mode for characters on
subsequent output to win

CURSES (S)

All functions returning type int return the value "OK" on success and
"ERR" on failure. These values are defined in curses.h. Functions
returning type WINDOW* return a valid pointer on success and the
value "NULL" on error.

See Also

tenncap(M), stty(C), setenv(S), tenninfo(S)
XENIX C Library Guide

Credit

This utility was developed at the University of California at
Berkeley and is used with pennission.

Page 8 October 10, 1988

CUSERID (S)

Name

cuserid - Gets the login name of the user.

Syntax

#include <stdio.h>

char *cuserid (s)
char *s;

Description

CUSERID (S)

cuserid returns a pointer to string which represents the login name of
the owner of the current process. If (int)s is zero, this representation is
generated in an internal static area, the address of which is returned.
If (int)s is nonzero, s is assumed to point to an array of at least
L _ cuserid characters; the representation is left in this array. The
manifest constant L _ cuserid is defined in <stdio.h>.

Diagnostics

If the login name cannot be found, cuserid returns NULL; if s is
nonzero in this case, \0 will be placed at *s.

See Also

getlogin(S), getpwent in getpwent(S)

Notes

cuserid uses getpwnam (see getpwent(S»; thus the results of a user's
call to the latter will be obliterated by a subsequent call to the former.

October 10, 1988 Page 1

DBM (S) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions.

Syntax

#include <dbm.h>

typedef struct { char *dptr; int dsize; } datum;

int dbminit(file)
char *file;

datum fetch(key)
datum key;

int store(key, content)
datum key, content;

int delete(key)
datum key;

datum firstkeyO;

datum nextkey(key);
datum key;

Description

These functions maintain key/content pairs in a database. The func­
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The functions
are obtained with the loader option -ldbm.

key s and content s are described by the datum typedef. A datum speci­
fies a string of dsize bytes pointed to by dptr. Arbitrary binary data, as
well as normal ASCII strings, are allowed. The database is stored in
two files. One file is a directory containing a bit map and has .dir as
its suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of this call, the files file .dir and file .pag must exist. (An
empty database is created by creating zero-length .dir and .pag files.)

Once open, the data stored under a key is accessed by fetch and data is
placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use offirstkey and nextkey.
firstkey will return the first key in the database. With any key next key

October 10, 1988 Page 1

DBM (S) DBM (S)

will return the next key in the database. This code will traverse the
database:

for(key=firstkeyO; key.dptr!=NULL; key=nextkey(key))

Example

The example program below uses dbm's dbminit, store, fetch and
delete functions. It reads in keys and data from a datafile (shown
below) and stores them in a database called "testfile". Newlines
("\n") are used for delimiters. It then reads the keys from "datafile"
and uses them to fetch the data out, print the data, and delete the
record.

To run this program the files "testfile.dir" and "testfile.pag" must
exist and be empty (0 bytes). The "datafile" and test program are as
follows:

Page 2

101
Xenix Programming
105
System Administration
234
Intro to Xenix

101
105
234

#include <stdio.h>
#include <dbm.h>
#define KEYSIZE 5
#define DATASIZE 25

typedef struct adatum
{

char *ptr;
int size;

} datum;

datum key, data, testdata;

FILE *fp, *fopenO;

char keybuf[KEYSIZE];
char keybuf2[KEYSIZE];
char databufl [DATASIZE];

mainO
{

datum fetchO;

October 10, 1988

DBM(S) DBM(S)

datum storeO;
char c;

/* Initialize the database */
dbminit(' 'testfile' ');
fp = fopen("datafile","r");

/* Read in Keys and Data until a newline */
while «c = getc(fp» != '\n') {
/* Read in a key */

key.ptr = keybuf;
*key.ptr++ = c;
key.size = 1;
while «c = getc(fp» != '\n') {

*key.ptr++ = c;
key.size++;

/* Read in a data field */
data. size = 0;
data. ptr = databufl;
while «c= getc(fp» != '\n') {

*data.ptr++ = c;
data.size+ +;

}
*data.ptr = '\0';
data.size++;

/* Store a record in the testfile database */
data. ptr = databufl;
key.ptr = keybuf;

printf(' 'datasize %d keysize %d\n" ,data.size,key .size);
printf("dataptr %s keyptr %s\n",data.ptr,key.ptr);

store (key ,data);
}
key.ptr = keybuf2;

/* Read in keys from datafile, and use them to fetch records */
while «*key.ptr++ = getc(fp» != EOF) {

key. size = 1;
while «c = getc(fp» != '\n') {

*key.ptr++ =c;
key.size++;

}
key.ptr = keybuf2;

/* Fetch record specified by key */
testdata = fetch(key);
printf(' 'Key: %s Data: %s\n",key.ptr,testdata.ptr);

/* Delete the record */
delete(key);

/* Attempt to retreive deleted record */
testdata = fetch(key);

/* printf to show data is now null */
printf("Deleted Key: %s Data: %s\n",key.ptr,testdata.ptr);

October 10, 1988 Page 3

DBM (S) DBM (S)

Diagnostics

All functions that return an int indicate errors with negative values. A
zero return indicates ok. Routines that return a datum indicate errors
with a null (0) dptr.

Notes

The .pag file will contain holes so that its apparent size is about four
times its actual content. Older XENIX systems may create real file
blocks for these holes when touched. These files cannot be copied by
normal means (ep, cat, tp, tar, ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal
block size (currently 1024 bytes). Moreover all key/content pairs that
hash together must fit on a single block. store will return an error in
the event that a disk block fills with inseparable data.

delete does not physically reclaim file space, although it does make it
available for reuse.

The order of keys presented by firstkey and nextkey depends on a
hashing function.

These routines are not reentrant, so they should not be used on more
than one database at a time.

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

Page 4 October 10, 1988

DEFOPEN (S)

Name

defopen, defread - Reads default entries.

Syntax

int defopen(filename)
char *filename;

char *defread(pattern)
char *pattern;

Description

DEFOPEN (S)

de/open and de/read are a pair of routines designed to allow easy
access to default definition files. XENIX is nonnally distributed in
binary fonn; the use of default files allows OEMs or site administra­
tors to customize utility defaults without having the source code.

de/open opens the default file named by the pathname in /ilename.
de/open returns null if it is successful in opening the file, or the /open
failure code (errno) if the open fails.

defread reads the previously opened file from the beginning until it
encounters a line beginning with pattern. de/read then returns a
pointer to the first character in the line after the initial pattern. If a
trailing newline character is read it is replaced by a null byte.

When all items of interest have been extracted from the opened file
the program may call de/open with the name of another file to be
searched, or it may call de/open with NULL, which closes the default
file without opening another.

Files

The XENIX convention is for a system program AyZ to store its defaults
(if any) in the file /etc/default/xyz.

Diagnostics

de/open returns zero on success and nonzero if the open fails. The
return value is the errno value set by /open (S).

de/read returns NULL if a default file is not open, if the indicated pat­
tern could not be found, or if it encounters any line in the file greater
than the maximum length of 128 characters.

October 10, 1988 Page 1

DEFOPEN (S) DEFOPEN(S)

Notes

The return value points to static data, whose contents are overwritten
by each call.

Page 2 October 10, 1988

DIAL (S) DIAL (S)

Name

dial - Establishes an out-going terminal line connection.

Syntax

#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

Description

dial returns a file-descriptor for a terminal line open for read/write.
The argument to dial is a CALL structure (defined in the <dial.h>
header file).

When it is finished with the terminal line, the calling program must
invoke undial to release the lock that has been set during the alloca­
tion of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
unsigned baud;
int speed;
char *line;
char *telno;
int modem;

char *device;

int dev _len;

} CALL;

/* pointer to termio attribute struct */
/* transmission data rate */
/* unused in this release */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify modem control for

direct lines * /
/*Will hold the name of the device used

to make a connection * /
/* The length of the device used to

make connection * /

dial searches the UUCP data file lusr/lib/uucp/Devices to find an
entry suitable for making the call. If the CALL element line is speci­
fied (not NULL), only an entry for that line will be used. If CALL ele­
ment telno is specified (not NULL), only an ACU entry will be used.
If felno is not specified (NULL), then the direct line must be specified.

The CALL element baud is for the desired transmission rate, which is
matched against the speed or speed range in the Devices entry. If baud
is not specified (0), then the highest speed allowed by the Devices
entry is used (or 1200 baud if Devices says Any speed). For example,

October 10, 1988 Page 1

DIAL (S) DIAL (S)

if you use a 113A modem, there should be a Devices entry for that line
with speed range 110-300; if you use a 212A modem, there should be
one entry with speed range 110-300 and another entry for speed 1200.

The CALL element telno is a pointer to a character string representing
the telephone number to be dialed. dial is intended for use with sim­
ple dialer modems which require only a telephone number. If the first
character of telno is a digit, then dial will supply the termination sym­
bol «), which should therefore not be included in the telno string.
However, dial can also be used with some types of programmable
dialer modem. In such a case, telno should point to the full command
string to be passed to the modem.

The CALL element modem is used to specify modem control for direct
lines. This element should be non-zero if modem control is required.
The CALL element attr is a pointer to a termio structure, as defined in
the termio.h header file. A NULL value for this pointer element may
be passed to the dial function, but if such a structure is included, the
elements specified in it will be set for the outgoing terminal line
before the connection is established. This is often important for cer­
tain attributes such as parity.

The CALL element device is a pointer to a buffer where dial places the
name of the device used to establish the connection e.g. /dev/ttylA.

The CALL element dev _len specifies the maximum length of this
buffer. If dev len is zero or device is NULL, then dial does not return
the device name.

Files

/usr/lib/uucp!Devices
/usr/spool/uucp/LCK .. tty-device

See Also

alarm(S), dial(ADM), read(S), termcap(M), uucp(C), write(S)

Diagnostics

On failure, a negative value indicating the reason for the failure will
be returned. Mnemonics for these negative indices listed below are
defined in the <dial.h> header file.

INTRPT -1 /* interrupt occurred */
D_HUNG -2 /* dialer hung (no return from write) */

Page 2 October 10, 1988

DIAL (S)

Notes

NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A

DIAL (S)

-3 /* no answer within 20 seconds */
-4 /* illegal baud rate */
-5 /* acu problem (openO failure) */
-6 /* line problem (openO failure) */
-7 /* can't open Devices file */
-8 /* requested device not available */
-9 /* requested device not known */
-10 /* no device available at

requested baud * /
-1] /* no device known at

requested baud */
-12 /* requested speed does not match */

Although dial participates in the UUCP line locking scheme and
searches the Devices file, it does not use any other UUCP files. In
particular, it pays no attention to the dialer field in the Devices file,
and does not use the dialers chat or dialer program specified there.
dial simply writes the telno string out to the modem.

Note that if dial is used with a programmable modem, it is likely to
return successfully as soon as it has programmed the modem, but
before the connection has actually been established.

Since dial uses lines owned by uucp, programs using the dial call can
only be run by root, unless they are have their uid set to uucp via the
setuidO call.

dial supports baud rates 110, 134 and 200 in addition to the baud rates
supported by UUCP (150, 300, 600, 1200,2400,4800,9600, 19200,
38400). If speeds 110, 134 or 200 are used, they can be edited into the
Devices file, but uuinstall cannot be used to enter them.

Warnings

When you include the <dial.h> header file, the <termio.h> header
file is automatically included.

October 10, 1988 Page 3

DIRECTORY (S) DIRECTORY (S)

Name

opendir, readdir, telldir, seekdir, rewinddir, closedir - Performs direc­
tory operations.

Syntax

#include <sys/ndir .h>
OR
#include <dirent.h>

DIR *opendir(fllename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

void seekdir(dirp, loc)
DIR *dirp;
long loc;

void rewinddir(dirp)
DIR *dirp;

void closedir(dirp)
DIR *dirp;

Description

There are two versions of directory(S). One version exists to search
standard XENIX directory structures and one allows heterogeneous
directory searching over networked systems. If you desire backwards
compatibility with previous versions of XENIX, you must include the
file:

<sys/ndir .h>

and you must compile your program with the -Ix option. If you wish to
use the heterogeneous directory searching, you must include the file:

<dirent.h>

and compile the program with the -Idir option. Note that only pro­
grams that are prepared in this manner may use the getdentsO call for
directory searching over networked systems.

October 10, 1988 Page 1

DIRECTORY (S) DIRECTORY (S)

opendir opens the directory named by filename and associates a direc­
tory stream with it. opendir returns a pointer to be used to identify, the
directory stream in subsequent operations. The NULL pointe'r is
returned iffilename cannot be accessed or if it is not a directory.

readdir returns a pointer to the next directory entry. It returns NULL
upon reaching the end of the directory or detecting an invalid seekdir
operation.

telldir returns the current location associated with the named
directory stream.

seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the direc­
tory stream when the telldir operation was performed. Values
returned by telldir are good only for the lifetime of the DIR pointer
from which they are derived. If the directory is closed and then reo­
pened, the telldir value may be invalidated due to undetected direc­
tory compaction. It is safe to use a previous telldir value immediately
after a call to opendir and before any calls to readdir.

rewinddir resets the position of the named directory stream to the
beginning of the directory.

closedir causes the named directory stream to be closed, and the
structure associated with the DIR pointer to be freed.

Sample code which searches a directory for the entry "name" is
shown below:

See Also

len == strlen(name);
dirp == opendir(".");
for (dp == readdir(dirp); dp !== NULL; dp == readdir(dirp»

if (dp->d_namlen ==== len &&
!strcmp(dp->d_name, name» {

}
closedir(dirp);

closedir(dirp);
return FOUND;

return NOT_FOUND;

close(S), Iseek(S), open(S),read(S)

Notes

For backwards compatible XENIX binaries, you must include
<sys/ndir.h> and the program must be compiled with the option -Ix.
The getdentsO system call cannot be used with binaries linked in this

Page 2 October 10, 1988

DIRECTORY (S) DIRECTORY (S)

manner.

For heterogeneous directory seaching over networked systems and
programs to be linked with COFF binaries, you must include the file
dirent.h and compile with the -ldir option. Programs compiled in this
manner may use the getdentsO call for directory searching locally and
over networks.

October 10, 1988 Page 3

DRAND48 (S) DRAND48 (S)

Name

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,
seed48, lcong48 - Generates uniformly distributed pseudo-random
numbers.

Syntax

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seed val)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

See Also

rand(S)

Description

This family of functions generates pseudo-random numbers using the
well-known linear congruential algorithm and 48-bit integer arith­
metic.

The functions drand48 and erand48 return non-negative double­
precision floating-point values uniformly distributed over the interval
[0.0, 1.0].

Functions lrand48 and nrand48 return non-negative long integers uni­
formly distributed over the interval [0, 231].

October 10, 1988 Page 1

DRAND48 (S) DRAND48 (S)

Functions mrand48 and jrand48 return signed long integers unifonnly
distributed over the interval [_23 I , 23 I].

Functions srand48, seed48 and Icong48 are initialization entry points,
one of which should be invoked before either drand48, lrand48 or
mrand48 is called. (Although it is not recommended practice, con­
stant default initializer values will be supplied automatically if
drand48, lrand48 or mrand48 is called without a prior call to an ini­
tialization entry point.) Functions erand48 , nrand48 and jrand48 do
not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer
values, $Xi , according to the linear congruential fonnula

Xn +1 = (aXil + C)mod m n2::0.

The parameter is m = 248; thus, 48-bit integer arithmetic is perfonned.
Unless Icong48 has been invoked, the multiplier value a and the
addend value c are given by:

a = 5DEECE66D 16 = 2736731631558
C=B I6 = 13 8·

The value returned by any of the functions drand48, erand48, Irand48,
nrand48, mrand48 or jrand48 is computed by first generating the next
48-bit Xi in the sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are copied from the
high-order (leftmost) bits of Xi and transfonned into the returned
value.

The functions drand48 , Irand48 and mrand48 store the last 48-bit Xi
generated in an internal buffer; that is why they must be initialized
prior to being invoked. The functions erand48 , nrand48 and jrand48
require the calling program to provide storage for the successive Xi
values in the array specified as an argument when the functions are
invoked. That is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value of Xi into
the array and pass it as an argument. By using different arguments,
functions erand48 , nrand48 and jrand48 allow separate modules of a
large program to generate several independent streams of pseudo­
random numbers, i.e., the sequence of numbers in each stream will not
depend upon how many times the routines have been called to gen­
erate numbers for the olher sireams.

The initializer function srand48 sets the high-order 32 bits of Xi to the
32 bits contained in its argument. The low-order 16 bits of Xi are set
to the arbitrary value 330E 16.

The initializer function seed48 sets the value of Xi to the 48-bit value
specified in the argument array. In addition, the previous value of Xi
is copied into a 48-bit internal buffer, used only by seed48, and a
pointer to this buffer is the value returned by seed48. This returned

Page 2 October 10, 1988

DRAND48 (S) DRAND48 (S)

pointer, which can just be ignored if not needed, is useful if a program
is to be restarted from a given point at some future time - use the
pointer to get at and store the last Xi value, and then use this value to
reinitialize via seed48 when the program is restarted.

The bitialization function lcong48 allows the user to specify the ini­
tial Xi, the multiplier value a, and the addend value c. Argument
array elements param[O-2] specify Xi, param[3-5] specify the multi­
plier a, and param[6] specifies the 16-bit addend c. After Icong48
has been called, a subsequent call to either srand48 or seed48 will
restore the "standard" multiplier and addend values, a and c, speci­
fied on the previous page.

See Also

rand(S)

Notes

These routines are coded in portable C. The source code for the port­
able version can even be used on computers which do not support

,floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist; instead, they are replaced by two new functions
shown below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers uni­
formly distributed over the interval [0, m -1].

October 10, 1988 Page 3

DUP (S)

Name

dup, dup2 - Duplicates an open file descriptor.

Syntax

int dup (fildes)
int tildes;

int dup2(fiIdes, fildes2)
int tildes, tildes2;

Description

DUP (S)

fildes is a file descriptor obtained from a creat, open, dup, fcntl , or
pipe system call. dup returns a new file descriptor having the follow­
ing in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls.
See fcntl (S).

dup returns the lowest available file descriptor. dup2 causes fildes2 to
refer to the same file as fildes. If fildes2 already referred to an open
file, it is closed first.

dup will fail if one or more of the following are true:

fildes is not a valid open file descriptor. [EBADF]

Sixty file descriptors are currently open. [EMFILE]

Return Value

Upon successful completion a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

Notes

The dup2 routine must be linked using the linker option -Ix.

October 10, 1988 Page 1

DUP (S) DUP (S)

See Also

createS), close(S), exec(S), fcntl(S), open(S), pipe(S)

Page 2 October 10, 1988

ECVT (S)

Name

ecvt, fcvt, gcvt - Perfonns output conversions.

Syntax

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

Description

ECVT(S)

en't converts the ,'allie to a null-tenninated string of ndigit ASCII
digits and returns a pointer to the string. The position of the decimal
point relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). If the sign of
the result is negative, the word pointed to by sign is nonzero, other­
wise it is zero. The low-order digit is rounded.

fn't is identical to en'f, except that the correct digit has been rounded
for FORTRAN F fonnat output of the number of digits specified by
ndigifs.

gn'{ converts the ,'allie to a null-tenninated ASCII string in buf and
returns a pointer to bllf. It attempts to produce ndigit significant digits
in FORTRAN F fonnat if possible, otherwise E fonnat, ready for
printing. Trailing zeros may be suppressed.

See Also

printf(S)

Notes

The return values point to static data whose content is overwritten by
each call.

October 10, 1988 Page 1

END (S)

Name

end, etext, edata - Last locations in program.

Syntax

extern char *end;
extern char *etext;
extern char *edata;

Description

END (S)

These names refer neither to routines nor to locations with interesting
contents. The address of etext is the first address above the program
text. edata is the first address above the initialized data region. end is
the first address above the uninitialized data region.

See Also

brk(S), malloc(S).

Warning

No assumptions should be made with respect to the ordering of the
program text, initialized data, and uninitialized data regions. For
example, the assumption can't be made that the addresses following
the address of etext will reference the uninitialized data region.

No assumptions can be made concerning the contiguity of information
within a region. A region may be split among different parts of
memory. Therefore, no assurance can be made that addresses within a
region are consecutive.

October 10, 1988 Page 1

ERF (S) ERF (S)

Name

erf, erfc - Error function and complementary error function.

Syntax

#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

Description

erf returns the error function of x, defined as . ~ J e -tCdt.
v~o

erfc, which returns 1.0 - erf(x), is provided because of the extreme
loss of relative accuracy if erf(x) is called for large x and the result
subtracted from 1.0 (e.g., for x = 5, 12 places are lost).

See Also

exp(S)

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

Name

ev _block - Wait until the queue contains an event.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ blockO

Description

After a process has opened an event queue with e1'_init(S) and
e1'_open(S), el'_block causes the process to sleep until there is an
event in the event queue.

Diagnostics

A call to el' block returns -1 if the process does not have an open
event queue,or if it is interrupted. It returns zero if it succeeds.

See Also

ev _close(S), ev _count(S), ev _flusheS), ev _getdev(S), ev _getemask(S),
ev~indev(S), ev_init(S), ev_open(S), ev_pop(S), ev_read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

Name

ev _close - Close the event queue and all associated devices.

Syntax

#include dypes.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ closeO

Description

ev_close closes the event queue and any event devices currently open.
This call takes no arguments.

An event queue must have been opened previously with ev _init(S) and
e-v_open(S).

Diagnostics

This routine returns a negative number to indicate an error. Making
this call before obtaining an open event queue is an example of such
an error.

See Also

ev _block(S), ev _count(S), ev _flush(S), ev _getdev(S), ev ~etemask(S),
ev _gindev(S), ev _init(S), ev _open(S), ev _pop(S), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

Name

ev _count - Returns the number of events currently in the queue.

Syntax

#include dypes.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ countO

Description

ev _count Returns the number of events currently in the queue. An
event queue must have been opened with ev_init(S) and ev _open(S).

Diagnostics

ev _count returns -1 if there is not an open event queue.

See Also

ev _block(S), ev _close(S), ev _flusheS), ev ~etdev(S), ev _getemask(S),
ev ~indev(S), ev _init(S), ev _open(S), ev _popeS), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

Name

ev _flush - Discard all events currently in the queue.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ flushO

Description

evJlush discards all events currently in the queue. Events in the queue
when ev Jlush is invoked will not be available to the program.

Diagnostics

ev Jlush returns -1 if there is no open event queue. Normally it returns
zero.

See Also

ev _block(S), ev _c1ose(S), ev _count(S), ev _getdev(S),
ev ~etemask(S), ev _gindev(S), ev _init(S), ev _open(S), ev _popeS),
ev _read(S), ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

Name

ev ~etdev - Gets a list of devices feeding an event queue.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

struct devinfo * getdev(dey mask, devinfop)
dmask t dey mask; -
struct devinfo *devinfop;

Description

ev _getdev allows a program to examine the devices that are attached
to its event queue. An open event queue must have been previously
obtained with ev _init(S) and ev _open(S). This routine takes two argu­
ments, a bitmask of device classes and a pointer to a device_info
structure. The device mask indicates the classes of devices in which
the program is interested. The device pointer is used to cycle through
the devices attached to the queue.

The device mask is made by OR'ing together a subset of D _ REL,
D _ ABS, D _STRING and D _ OTHER. These values represent classes
of graphics input devices. D REL refers to relative locator devices
like mice. D _ ABS refers to absolute locator devices like bitpads and
lightpens. D STRING refers to character stream devices like the key-
board. -

The device pointer parameter is NULL for the first call. Each call
returns a pointer which should be passed in in subsequent calls. When
the routine has iterated through all the devices attached to the queue,
it returns NULL.

The device information pointer points to a structure which looks like
this:

October 10, 1988 Page 1

struct devinfo {
short
short
short
char
char

} ;

handle;
class;
type;

EV_GETDEV(S)

/* not used by application * /
/* REL, ABS, STRING or OTHER */
/* The type of hardware */
name; / Device name, from data files * /
key; / Device key, from data files * /

An application can examine this information and decide whether or
not to use the device. The ev gindev(S) routine allows a program to
exclude or later re-include -a device. The pointer returned by
ev _getdev is passed in to ev _gindev(S).

When a queue is opened, a bitmask specifying what kinds of devices
to attach is supplied. All devices of a class which is masked in are
attached to the queue. This routine is used to examine those devices.

Diagnostics

This routine returns -1 to a program which does not have an open
event queue. It returns -2 if no devices of any class which is masked in
are found. Normally it returns zero.

See Also

ev _block(S), ev _close(S), ev _count(S), ev _flusheS), ev ~etemask(S),
ev ~indev(S), ev _init(S), ev _open(S), ev _pop(S), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

The keyboard is attached to an event queue whenever devices of class
D _STRING are requested. If the keyboard is attached to an event
queue, then the keyboard will not generate normal stdin input, until
the event queue is closed.

Page·2 October 10, 1988

Name

ev ~indev - include/exclude devices for event input.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev gindev(devinfop, action)
strucf devinfo *devinfop;
char action;

Description

ev gindev is used in concert with ev getdev to exclude or later re­
include devices from feeding the event queue. The argument devinfop
contains the pointer to the device to be included or excluded. The
arguments are a pointer to the device and EXCLUDE. The pointer is
obtained through the getdev function.

EXCLUDE is defined in <mouse.h>.

Diagnostics

This routine returns ° if it succeeds. It returns -1 if there is no active
event queue. It returns -2 if the devinfo argument does not point to a
valid device. It returns -3 on attempts to exclude an excluded device,
or attempts to reinclude an included device. It returns -4 if the action
argument is invalid.

See Also

ev _block(S), ev _close(S), ev _count(S), ev _flusheS), ev ~etdev(S),
ev~etemask(S), ev_init(S), ev_open(S), ev_pop(S), ev_read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

EV _ GETEMASK C S)

Name

ev _getemask - Return the current event mask.

Syntax

#include <types.h>
#include <param.h>
#include <svsmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev_getemask(emaskp)
emask _t *emaskp;

Description

Ei - GETEMASK (S)

e1'_getemask returns the current event mask. This call takes a pointer
to an event mask which is filled in. The program must have already
opened an event queue.

This call complements el' seteJJ1ask. The manual page for
el" setenwsk describes an event mask in detail.

Diagnostics

el"_getemask returns -1 if there is no open event queue. Otherwise it
returns 0.

See Also

ev_block(S), ev_closeCS), ev_count(S), ev_flush(S), ev_getdev(S).
ev _gindev(S), ev _init(S). ev _open(S), ev _popeS), ev _read(S),
ev _resume(S), ev _setemask(S). ev _suspend(S)

Notes

This routine must be linked in with the -Ievent linker option.

October 10, 1988 Page 1

Name

ev _init - Invokes the event manager.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int evJnitO

Description

ev init reads the system event-configuration files and initializes the
event manager. It is the first of two steps a program follows to obtain
an event queue. Devices like mice or the keyboard may be read
through an event queue. When ev init is called, the configuration
files are read and checked for syntax. If there is an error or incon­
sistency, ev init returns an error. After the event manager is initial­
ized, ev _open should be called to obtain an event queue.

Diagnostics

ev init returns 0 if it succeeds in reading the data files and initializing
an-event queue. Otherwise it returns -1.

See Also

ev _block(S), ev _c1ose(S), ev _count(S), ev _flusheS), ev ~etdev(S),
ev ~etemask(S), ev ~indev(S), ev _open(S), ev _popeS), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

Files

/usr/lib/ event/devices
/usr/lib/event/ttys

October 10, 1988 Page 1

E\' OPEN (S)

~ame

ev_open - Opens an event queue for input.

#include dypes.h>
#include <param.h>
#include <svsmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev open{ dmask)
dmask_t *dmaskp:

Description

C\'_OPCll opens an event queue for input. The argument points to a bit­
mask of device types. C\'_OI)CI1 attaches available devices whose class
is masked in. C\' OpCll fills in the mask to indicate what kinds of dcv~
ices it finds. -

The bitmask is made of one or more or four classes of devices. The
four classes arc D_STRING. D_REL D_ABS. or D_OTHER.
D_STRING refers to character stream devices like the keyboard.
D_REL refers to rclati\'t~ locator devices like mice. D_ABS refers to
absolute locator devices like bitpads. These values are defined in
<mouse.h>.

n'_ojJCll attempts to open devices of the types indicated in the argu­
ment and sets the mask to indicate the devices successfully opened. If
no devices could be successfully opened. ('\,_oPCI1 returns -1 as an
error condition.

If C\'_ojJCI1 succeeds in opening an event queue and devices. it returns
a file descriptor for the event queue. The file descriptor is for use with
the Sc/CCf(5) system call and should not be used for reading or writing.

This is a program fragment that opens an event queue 'Vvith a mouse
and the keyboard attached:

main\)
1

dmask_ dmask:
int qfd:

ev_initO:

October 10. 1988

i';' device mask ;;:f
/~, event queue file descriptor */

i';' initialize event manager */

i';' device mask for mouse & kbd */

Page 1

dmask = D _RELID _STRING;
qfd = ev_open(&dmask); j* try to open event queue *j
if (qfd < 0)

exit(1); j* error on open *j
if (dmask != (D_REL I D_STRING»

exit(2); j* could not attach both devices *j
j* event queue is open *j

Diagnostics

The routine returns a negative number if it fails.

It returns -1 if there was a configuration error in the configuration files
(see ev init(S». ev open returns -2 if it does not find any devices to
attach. It returns -3lf it is unable to open devices it finds. It returns -4
if it is unable to open an event queue.

See Also

ev _block(S), ev _c1ose(S), ev _count(S), ev _flusheS), ev _getdev(S),
ev ~etemask(S), ev _gindev(S), ev _init(S), ev _popeS), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

Page 2 October 10, 1988

Name

ev _pop - Pop the next event off the queue.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev_popO

Description

ev yap clears the next event off the queue and returns the number of
events lost due to queue overrun since the last evyap call. An event
queue must have been opened with e",,'_init(S) and ev _apen(S).

After an application is done with an event, the event is pop'ed off the
queue. The queue is of fixed size, so if events are not pop'ed fast
enough some might be lost due to overrun. A counter maintains the
number of lost events. When ev yap is called, it clears the top event
off of the queue, clears the counter and returns the number of lost
events. This should always be zero, unless a program stops reading its
event queue. If the queue is empty, ev yap returns -1.

When ev yap is called, the most recent pointer returned by ev_read
must be considered invalid, since that storage may be overwritten by
the event driver.

Diagnostics

ev yap returns -1 if there is not an open event queue. It returns -2 if
there is nothing to pop because the queue is empty.

See Also

ev _block(S), ev _close(S), ev _count(S), ev _flusheS), ev _getdev(S),
ev -JSetemask(S), ev _gindev(S), ev _init(S), ev _open(S), ev _read(S),
ev _resume(S), ev _setemask(S), ev _suspend(S)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

Name

ev _read - Read the next event in the queue.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

EVENT* ev _readO

Description

e-..,,'_read returns a pointer to the next event in the queue or NULL if
the queue is empty. Multiple calls to this routine return the same
pointer until e-vyop is called.

It is an error to call this routine from a program which does not have
an open event queue.

Diagnostics

This routine returns NULL if there is no event to read OR if there is
not an open event queue.

See Also

ev _block(S), ev _close(S), ev _count(S). ev _flusheS), ev _getdev(S),
ev _getemask(S), ev _gindev(S), ev _init(S), ev _open(S), ev _popeS),
ev_resume(S), ev_setemask(S), ev_suspendCS)

Notes

This routine must be linked in with the -levent linker option.

October 10, 1988 Page 1

EV_RESUME (S)

Name

ev _resume - Restart a suspended queue.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ resumeO

Description

ev_resume restarts an event queue suspended by an ev_suspend call.

Diagnostics

This routine returns -1 to a program which does not have an open
event queue. It returns -2 if the queue is not suspended. Normally it
returns O.

See Also

ev _block(S), ev _close(S), ev _count(S), ev _flusheS), ev ~etdev(S),
ev _getemask(S), ev _gindev(S), ev _init(S), ev _open(S), ev _popeS),
ev_read(S), ev_setemask(S), ev_suspend(S)

Notes

This routine must be linked in with the -Ievent linker option.

October 10, 1988 Page 1

EV _ SETEMASK (S) EV_SETEMASK (S)

Name

ev _setemask - Sets event mask.

Syntax

#include <types.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev setemask(emask)
emask_ t emask;

Description

ev _setemask sets the event mask on an event queue. Events whose tag
is not masked in are prevented from entering an event queue. Event
masks are always initialized to allow all events.

The different types of events are:

R Reserved
a "Other" Device events
b Button events
c String events
d Relative Locator movement events
e Absolute Locator movement events

The bits that make up the mask number have the following defini­
tions:

!RIRIRIRIRIRIRIRIRIR/Rle/d/c/blal

15 °
Diagnostics

If there is no open event queue -1 is returned. If the new event mask
would cause no events to enter the queue, -2 is returned and the event
mask is not changed. For example, on a queue with only a mouse, any
event mask which did not include D REL would not allow any events
to be enqueued. -

See Also

ev _block(S), ev _close(S), ev _count(S), ev _flush(S), ev _getdev(S),

October 10, 1988 Page 1

EV _ SETEMASK (S) EV _ SETEMASK (S)

ev ~etemask(S), ev _gindev(S), ev _init(S), ev _open(S), ev _popeS),
ev _read(S), ev _resume(S), ev _suspend(S).

Page 2 October 10, 1988

Name

ev _suspend - Suspends an event queue.

Syntax

#include dypes.h>
#include <param.h>
#include <sysmacros.h>
#include <page.h>
#include <event.h>
#include <mouse.h>

int ev _ suspendO

Description

e\'_suspend suspends a queue from receiving input. For example, if an
application wants to fork a subshell, a call to e1-'_sllspend can suspend
events until the subshcll returns and the que'le is resumed with an
el'_resume call. That way a process in the subshell can also have an
event queue. This is required because the event manager only allows
one active event queue per terminal or multiscreen.

Diagnostics

This function returns -1 if no event queue is opened. It returns -2 if the
queue is already suspended. Normally it returns zero.

See Also

ev _block(S), ev _c1ose(S), ev _count(S), ev _flusheS), ev _getdev(S),
ev _getemask(S), ev ~indev(S), ev _init(S), ev _open(S), ev _popeS),
ev _read(S), ev _resume(S), ev _setemask(S)

October 10, 1988 Page 1

EXEC (S) EXEC (S)

Name

exeel, execv, exeele, execve, execlp, execvp - Executes a file.

Syntax

int execl (path, argO, argl, ... , argn, (char *)0)
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ... , argn, (char *)0, envp)
char *path, *argO, *argl, ... , *argn, *envp[];

int execve (path, argv, envp);
char *path, *argv[], *envp[];

int execlp (file, argO, argl, ... , argn, (char *)0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv[];

Description

exec in all its fonns transfonns the calling process into a new process.
The new process is constructed from an ordinary, executable file
called the "new process file." There can be no return from a success­
ful exec because the calling process is overlaid by the new process.

path points to a pathname that identifies the new process file.

file points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment line
"PATH =" (see environ (M». The environment is supplied by the
shell (see sh(C».

argO, arg 1 , ... , argn are pointers to null-tenninated character strings.
These strings constitute the argument list available to the new process.
By convention, at least argO must be present, and it must point to a
string that is the same as path (or its last component).

argv is an array of character pointers to null-tenninated strings. These
strings constitute the argument list available to the new process. By
convention, argv must have at least one member, and it must point to
a string that is the same as path (or its last component). argv is ter­
minated by a null pointer.

October 10, 1988 Page 1

EXEC (S) EXEC (S)

envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process. Envp is
terminated by a null pointer.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see fentl (S).
For those file descriptors that remain open, the file pointer is
unchanged.

Signals set to terminate the calling process will be set to terminate the
new process. Signals set to be ignored by the calling process will be
set to be ignored by the new process. Signals set to be caught by the
calling process will be set to terminate new process; see signal (S).

If the set-user-ID mode bit of the new process file is set (see
chmod(S)), exec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID mode
bit of the new process file is set, the effective group ID of the new pro­
cess is set to the group ID of the new process file. The real user ID and
real group ID of the new process remain the same as those of the cal­
ling process.

Profiling is disabled for the new process; see profileS).

The new process also inherits the following attributes from the calling
process:

Page 2

Nice value (see nice (S))

Process ID

Parent process ID

Process group ID

semadj values (see semop(S))

TrY group ID (see exit(S) and signal(S))

Trace flag (see ptrace (S) request 0)

Time left until an alarm clock signal (see alarm(S))

Current working directory

Root directory

File mode creation mask (see umask(S))

File size limit (see ulimit(S))

EXEC (S) EXEC (S)

utime, stime, cutime , and cstime (see times (S»

From C, two interfaces are available: exec! and execv. exec! is useful
when a known file with known arguments is being called; the argu­
ments to exec! are the character strings constituting the file and the
arguments. The first argument is conventionally the same as the
filename (or its last component). A ° argument must end the argu­
ment list.

The execv version is useful when the number of arguments is unknown
in advance. The arguments to execv are the name of the file to be exe­
cuted and a vector of strings containing the arguments. The last argu­
ment string must be followed by a ° pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is conven­
tionally at least one and the first member of the array points to a string
containing the name of the file.

argv is directly usable in another execv because argv [argc] is 0.

envp is a pointer to an array of strings that constitute the environment
of the process. Each string consists of a name, an "=", and a null­
terminated value. The array of pointers is terminated by a null
pointer. The shell sh(C) passes an environment entry for each global
shell variable defined when the program is called. See environ (M) for
some conventionally used names. The C run-time start-off routine
places a copy of envp in the global cell environ, which is used by
execv and exeel to pass the environment to any subprograms executed
by the current program. The exec routines use lower-level routines as
follows to pass an environment explicitly:

execle(file, argO, arg1, ... , argn, 0, environ);
execve(file, argv, environ);

exec!p and execvp are called with the same arguments as exeel and
execv, but duplicate the shell's actions in searching for an executable
file in a list of directories. The directory list is obtained from the
environment.

October 10, 1988 Page 3

EXEC (S) EXEC (S)

exec will fail and return to the calling process if one or more of the
following are true:

One or more components of the new process file's pathname do not
exist. [ENOENT]

A component of the new process file's path prefix is not a direc­
tory. [ENOTDIR]

Search permission is denied for a directory listed in the new pro­
cess file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission.
[EACCES]

The new process file has the appropriate access permission, but has
an invalid magic number in its header or some other executable file
format inconsistency. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is physically avail­
able for user programs or the program would not fit on the swap
disk. [ENOMEM]

The number of bytes in the new process' argument list is greater
than the system-imposed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size values
in its header. [EFAULT]

path, argv, or envp point to an illegal address. [EFAULT]

Return Value

If exec returns to the calling process an error has occurred; the return
value will be -1 and erma will be set to indicate the error.

See Also

exit(S), fork(S), proct1(S), semop(S)

Page 4

EXEC (S) EXEC (S)

Example

The example below demonstrates the use of the execv system call.
Compiling this program and entering "a.out /bin/ls -s fetc" will func­
tion as "Is -s fetc" would from the command line.

Notes

maine argc ,argv)
int aroc'
char ~*~ov'
{ e ,

f*

char **argv2;

argv2 = &argv[1];
execv(argv2[0],argv2);

The example of exeel below will call the
"/bin/lc" program with ., -s fetc" as parameters.
*f

mainO
{

char *arg, *arg2, *path;

path = "/bin/lc";
arg = "-s";
arg2 = "fetc";
exeel(path,path,arg,arg2,(char *)0);

exec may still fail when physical memory is larger than the swap disk
(see ENOMEM above). However, this restriction may be lifted using
one of the following proctl (S) calls:

PRHUGEX Allows programs to be executed by this process even if
they exceed the available swap disk space. Such pro­
grams must still fit in the available physical memory and
the caller's effective user ID must be the super-user. Such
HUGE processes are locked in memory to prevent them
from being swapped.

PRNORMX
Makes a process unable to exec HUGE programs. This
call may be executed by any user.

October 10, 1988 Page 5

EXECSEG (S)

Name

execseg - Makes a data region executable.

Syntax

#include <xdata.h>

excode t execseg(oldaddr, size)
exdata -t oldaddr;
unsigned size;

int unexecseg(addr)
excode _ t addr;

Description

EXECSEG (S)

execseg(S) is passed the current data address and size of the region to
be executed and it returns the starting address of a region that is at
least size number of bytes which can safely be branched to. On the
Intel 8086 and 80286, processor an alias CS descriptor is associated
with the same memory as the data segment in which the oldaddr
region lies. This means that offsets in the executable segment to
access a given byte are essentially the same as the offsets in the origi­
nal data segment, except the selector is different.

Note that "excode_t" and "exdata_t" are "far" pointers on the 8086
and 80286 and segment selectors on the 386. On an architecture where
pages in the same "segment" are any combination of
read/write/execute, the returned address is identical to the parameter
passed to execseg(S).

We recommend that programs using this function on 8086- and
80286-based processors be large model, or that programmers be very
familiar with "hybrid model" as well as with the use and misuse of
far data.

When an error occurs, execseg(S) returns «excode_t)-1), with errno
set to ENONEM. Errors include an invalid data address or size, and
an inability to allocate a new data selector.

The unexecsegO system call disables an addr previously returned from
execseg(S) from being used as an executable region. Specifically, on
the 8086 and 80286 architectures, this call frees the selector used for
the executable region. It returns 0 on success, or a -1 on error. For
example, if addr is not an address returned by execseg(S), then a -1 is
returned and it can be used as an executable region.

October 10, 1988 Page 1

EXECSEG (S) EXECSEG (S)

Example:

excode_t funcp; char far *datap;

datap=brkctl(BR_NEWSEG, 1000L,OL);
load_with_code(datap, 1000) /*loads executable code into

data region datap* /
funcp=execseg(datap, 1 000); (*funcp)()
/*call subroutine*/ if (unexecseg (funcp)==-l){

printf("unexecseg failed\n "); exit(1); }

Notes

On the Intel 8086 and 80286 architectures, execseg(S) expects far
addresses to be passed. Only experienced programmers should use
this feature.

Since the execseg return value and address arguments are ' 'far' ,
pointerson 86 and 286 machines, any program including xdata.h must
be compiled using the -Me option.

The following restrictions apply to the execute data system call. Even
though an address and size are passed to execseg, the entire segment
containing the requested addresses are aliased. The address and size
are validated before the aliasing is allowed. No part of the data seg­
ment that is aliased may be deallocated (via sbrk(S) or brkctl(S»
while it is aliased. This restriction applies to the entire segment that is
aliased, even if only a small piece of the segment was aliased. After
unexecseging the aliased segment, the data segment may be deallo­
cated. Each call to execseg results in a new alias segment being used,
even if the data segment is already aliased.

Due to compiler confusion, you may get the message "at least one
void operand" when using execseg. Please ignore it.

Programs using this call must be compiled with the -Ix option.

Under XENIX-386 the oldaddr parameter passed to execseg() is a seg­
ment selector, not a pointer. execseg() returns a selector value which
provides a code segment alias to the original segment.

Similarly, the addr parameter passed to unexecseg() is a selector value
that has previously been returned byexecseg().

Note that since execseg() returns a segment selector on 386 machines,
the return value from execseg() is not directly useable in a C program.
In an assembler program this selector value would be used as the top
16 bits of a 48 bit far pointer.

Page 2

EXIT(S)

Name

exit, _exit - Tenninates a process.

Syntax

void exit (status)
int status;

void exit (status)
int status;

Description

EXIT(S)

exit tenninates the calling process. All of the file descriptors open in
the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process' tennination and the low-order 8 bits
(i.e., bits 0377) of status are made available to it; see waiteS). If the
parent is not waiting, the child's status will be made available to it
when the parent subsequently executes waiteS).

If the parent process of the calling process is not executing a wait, the
calling process is transfonned into a "zombie process." A zombie
process is a process that only occupies a slot in the process table, it
has no other space allocated either in user or kernel space. The pro­
cess table slot that it occupies is partially overlaid with time account­
ing information (see <sys/proc.h» to be used by times (S).

The parent process ID of all of the calling process' existing child
processes and zombie processes is set to 1. This means the initializa­
tion process (see intro(S)) inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm _ nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop(S», that semad,i value is added to the semval of the
specified semaphore.

If the process has a text, data lock, or process, an unlock is performed
(see plock(S».

l An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct (S).

October 10, 1988 Page 1

EXIT(S) EXIT(S)

If the process ID, TTY group ID, and process group ID of the calling
process are equal, the SIGHUP signal is sent to each of the processes
that has a process group ID equal to that of the calling process.

The C function exit may cause cleanup actions before the process
exits. The _exit circumvents all cleanup.

See Also

acct(S), intro(S), plock(S), semop(S), signal(S), waiteS)

Warning

See Warning in signal(S)

Page 2

,1
~~

EXP (S) EXP (S)

Name

exp, log, pow, sqrt, logiO - Perfonns exponential, logarithm, power,
square root functions.

Syntax

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

double loglO (x)
double x;

Description

exp returns the exponential function of x .

log returns the natural logarithm of x.

pow returns X.

sqrt returns the square root of x.

See Also

intro(S), hypot(S), sinh(S)

Diagnostics

exp and pow return a HUGE value when the correct value would over­
flow. An unusually large argument may also result in errno being set
to ERANGE. log and log 10 return HUGE negative values and set
errno to EDOM when x is nonpositive. A message indicating
DOMAIN error (or SING error when x is 0) is printed on the standard
error output. pow returns zero and sets errno to EDOM when x is non­
positive and y is not an integer, or whee x and yare both zero. sqrt
returns 0 and sets errno to EDOM when x is negative. A message

October 10, 1988 Page 1

EXP (S) EXP (S)

indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(S).

Notes

These routines must be linked by using the -1m linker option.

Page 2 October 10, 1988

FCLOSE (S)

Name

fclose, fflush - Closes or flushes a stream.

Syntax

#include <stdio.h>

int fclose (stream)
FILE *stream;

int mush (stream)
FILE *stream;

Description

FCLOSE (S)

fclose causes any buffers for the named stream to be emptied, and the
file to be closed. Buffers allocated by the standard input/output sys­
tem are freed.

fclose is performed automatically upon calling exit (S).

!flush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return ° for success, and EOF if any errors were
detected.

See Also

close(S), fopen(S), setbuf(S)

October 10, 1988 Page 1

FCNTL (S) FCNTL (S)

Name

fcntl - Controls open files.

Syntax

#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

Description

JentZ provides for control over open files. JiZdes is an open file
descriptor obtained from a creat, open, dup ,JentZ, or pipe system call.
arg is either an int or a pointer, depending on the emd given. See
below.

The cmds available are:

F_DUPFD

F_GETFD

Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descrip­
tors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file descrip­
tor is set to remain open across exec (S) system calls.

Gets the close-on-exec flag associated with the file descrip­
tor fiZdes. If the low-order bit is 0 the file will remain open
across exec, otherwise the file will be closed upon execu­
tion of exec.

F _SETFD Sets the close-on-exec flag associated with .ftZdes to the
low-order bit of arg (0 or otherwise as above).

October 10, 1988 Page 1

FCNTL (S) FCNTL (S)

F _GETFL Gets file status flags: O_RDONLY, 0_ WRONLY,
O_RDWR, O_NDELAY, or O_APPEND.

F _SETFL Sets file status flags to arg. Only certain flags can be set.

F_GETLK
Gets the first lock which blocks the lock description given
by the variable of type struct flock pointed to by arg (see
below). The infonnation retrieved overwrites the infonna­
tion passed to fcntl in the flock structure. If no lock is found
that would prevent this lock from being created, then the
structure is passed back unchanged except for the lock type
which will be set to F _ UNLCK.

F _SETLK Sets or clears a file segment lock according to the variable
of type struct flock pointed to by arg (see below). The
F _SETLK command is used to establish read (F _RDLCK)
and write (F _ WRLCK) locks, as well as remove either type
of lock (F _UNLCK). If a read or write lock cannot be set,
fcntl will immediately return an error value of - 1.

F_SETLKW
This command is the same as ,F _SETLK except that if a read
or write lock is blocked by other locks, the process will
sleep until the segment is free to be locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a file
at a given time. The file descriptor on which a read lock is being
placed must have been opened with read access.

A write lock prevents any process from read locking or write locking
the protected area. Only one write lock may exist for a given segment
of a file at a given time. The file descriptor on which a write lock is
being placed must have been opened with write access.

The structure flock describes the type (I type), starting offset
(I_whence), relative offset (I_start), size (I_len), process ID (I yid)
and system ID (I sysid) of the segment of the file to be affected as
shown below: -

struct flock {
C'lhn......... 1 +"'7_"".
.:>nVH. ._~y PI,;,.
short C whence:
long Cstart:
long Clen:
short Cpid:
short Csysid:

} ;

Page 2

!* F _RDLCK, F _ 'vVRLCK, F _UNLCK*/
/* flag to choose starting offset */
/* relative offset in bytes */
/* if 0 then until EOF */
/* returned with F _GETLK */
/* returned with F _GETLK */

October 10, 1988

FCNTL (S) FCNTL (S)

I whence is 0,1 or 2 to indicate that the relative offset will be meas­
ured from the start of the file, current position or end of the file,
respectively.

The process ID and system ID fields are only used with the F _GETLK
command to return the value for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative rela­
tive to the beginning of the file. A lock may be set to always extend to
the end of file by setting I len to zero (0). If such a lock also has
I_start set to zero (0), the -whole file will be locked. Changing or
unlocking a segment from the middle of a larger locked segment
leaves two smaller segments for either end. Locking a segment that is
already locked by the calling process causes the old lock type to be
removed and the new lock type to take affect. All locks associated
with a file for a given process are removed when a file descriptor for
that file is closed by that process or the process holding that file
descriptor terminates. Locks are not inherited by a child process in a
lork(S) system call.

Icntl fails if one or more of the following is true:

fildes is not a valid open file descriptor. [EBADF]

cmd is F _DUPFD and 60 file descriptors are currently open.
[EMFILE]

cmd is F _DUPFD and arg is negative or greater than 60. [EINV AL]

cmd is F _GETLK, F _SETLK, or F _SETLKW and arg or the data it
points to is not valid. [EINV AL]

cmd is F _SETLK, and the lock (I type) is a write (F _ WRLCK) lock,
and the segment of a file to he locked is already read or write
locked by another process. [EAGAIN]

cmd is F _SETLK, and the lock (I_type) is a read (F _RDLCK) lock,
and the segment of a file to be locked is already write locked by
another process. [EAGAIN]

cmd is F _SETLK or F _SETLKW, the type of lock is a read or write
lock and there are no more file locks available (too many segments
are locked). [ENOLOCK]

cmd is F _SETLK, the lock is blocked by a lock from another pro­
cess and putting the calling process to sleep or waiting for that
lock to become free, would cause a deadlock. [EDEADLK] or
[EDEADLOCK]

October 10, 1988 Page 3

FCNTL (S) FCNTL (S)

Return Value

Upon successful completion, the value returned depends on emd as
follows:

F_DUPFD
A new file descriptor

F_GETFD
Value of flag (only the low-order bit is defined)

F _SETFD Value other than -1

F _GETFL Value of file flags

F _SETFL Value other than -1

F_GETLK
Value other than -1

F _SETLK Value other than -1

F_SETLKW
Value other than -1

Otherwise, a value of -1 is returned and erma is set to indicate the
error.

See Also

close(S), exec(S), 10ckf(S), open(S)

Notes

fentl provides mandatory record locking.

Page 4 October 10, 1988

FERROR (S)

Name

ferror, feof, clearerr, fileno - Detennines stream status.

Syntax

#include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream

void clear err (stream)
FILE *stream

int fileno(stream)
FILE *stream;

Description

FERROR (S)

feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero.

ferror returns nonzero when an error has occurred reading or writing
the named stream, otherwise zero. Unless cleared by cleal'err, the
error indication lasts until the stream is closed.

clearerr resets the error indication on the named stream.

fileno returns the integer file descriptor associated with the stream,
see open (S).

feof, ferror, and fiZeno are implemented as macros; they cannot be
redeclared.

See Also

open(S),fopen(S)

October 10, 1988 Page 1

FLOOR (S) FLOOR (S)

Name

floor, fabs, ceil, fmod - Performs absolute value, floor, ceiling and
remainder functions.

Syntax

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double X;

Description

labs returns I x I .

floor returns the largest integer (as a double precision number) not
greater than x.

ceil returns the smallest integer not less than x.

/mod returns the number I such that x = iy + I, for some integer i, and
05:I<y·

See Also

abs(S)

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

FOPEN(S)

Name

fopen, freopen, fdopen - Opens a stream.

Syntax

#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

Description

FOPEN (S)

fopen opens the file named by filename and associates a stream with
it. fopen returns a pointer to be used to identify the stream in subse­
quent operations.

type is a character string having one of the following values:

r Open for reading

w Create for writing

a Append; open for writing at end of file, or create for writing

r+ Open for update (reading and writing)

w+ Create for update

a+ Append; open or create for update at end of file

freopen substitutes the named file in place of the open stream. It
returns the original value of stream. The original stream is closed,
regardless of whether the open call ultimately succeeds.

freopen is typically used to attach the preopened constant names
stdin, stdout, and stderr to specified files.

October 10, 1988 Page 1

FOPEN(S) FOPEN(S)

Jdopen associates a stream with a file descriptor obtained from open,
dup, creat, or pipe (8). The type of the stream must agree with the
mode of the open file. The type must be provided because the stan­
dard I/O library has no way to query the type of an open file descrip­
tor. Jdopen returns the new stream.

When a file is opened for update, both input and output may be done
on the resulting stream. However, output may not be directly fol­
lowed by input without an intervening Jseek or rewind, and input may
not be directly followed by output without an intervening Jseek,
rewind, or an input operation which encounters the end of the file.

When a file is opened for append (that is, when type is "a" or "a+"),
it is impossible to overwrite information already in the file. Jseek may
be used to reposition the file pointer to any position in the file but
when output is written to the file, the current file pointer is disre­
garded. All output is written at the end of the file and causes the file
pointer to be repositioned at the end of the output. If two separate
processes open the same file for append, each process may write freely
to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file.

See Also

open(S), fclose(S)

Diagnostics

Jopen and Jreopen return the pointer NULL if filename cannot be
accessed.

Page 2 October 10, 1988

FORK(S) FORK(S)

Name

fork - Creates a new process.

Syntax

int fork ()

Description

fork causes creation of a new process. The new process (child pro­
cess) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the
parent process:

environment

close-on-exec flag (see exec(S»

signal handling settings (that is, SIG_DFL, SIG_IGN, function
address)

set-user-ID mode bit

set-group-ID mode bit

process group ID

tty group ID (see exit(S) and signal(S»

current working directory

root directory

file mode creation mask (see umask(S»

file size limit (see ulimit(S»

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process
ID of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

October 10, 1988 Page 1

FORK(S) FORK(S)

All semadj values are cleared (see semop(S».

The child process' utime, stime, cutime, and cstime are set to 0;
see times(S).

The time left on the parent's alarm clock is not passed on to the
child.

fork returns a value of 0 to the child process.

fork returns the process ID of the child process to the parent process.

fork will fail and no child process will be created if one or more of the
following are true:

The system-imposed limit on the total number of processes under
execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. [EAGAIN]

Not enough memory is available to create the forked image.
[ENOMEM]

The shared memory table overflows. [EMFILE]

Return Value

Upon successful completion, fork returns a value of 0 to the child pro­
cess and returns the process ID of the child process to the parent pro­
cess. Otherwise, a value of -1 is returned to the parent process, no
child process is created, and errno is set to indicate the error.

See Also

exec(S), sdget(S), semop(S), shmop(S), wait(S)

Page 2 October 10, 1988

FORK(S) FORK(S)

Example

The example program below illustrates the use of a forkO call, and
describes which sections of code are executed by each process.

mainO
{

int pid;

printf("The program begins ... \n");
if «pid = forkO) == 0) {

printf(, 'A child is bom\n' ');
j* child would usually call "exec" here *j

} else {
printf(' 'I am the parent process\n' ');

}
j* If child does not "exec", both processes

execute code placed here. *j
printf(' 'Both processes print this line.\n' ');

October 10, 1988 Page 3

FREAD (S)

Name

fread, fwrite - Performs buffered binary input and output.

Syntax

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

Description

FREAD (S)

fread reads, into a block beginning at ptr , nitems of data of the type of
*ptr from the named input stream, where an item of data is a sequence
of bytes (not necessarily terminated by a null byte) of length size.
fread stops appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been read.
fread leaves the file pointer in stream, if defined, pointing to the byte
following the last byte read, if there is one. fread does not change the
contents of stream. It returns the number of items actually read.

fwrite appends at most nitems of data of the type of *ptr beginning at
ptr to the named output stream. fwrite stops appending when it has
appended nitems items of data or if an error condition is encountered
on stream. fwrite does not change the contents of the array pointed to
by ptr. fwrite increments the file pointer in stream, if defined, by the
number of bytes written. It returns the number of items actually writ­
ten.

See Also

fopen(S), getc(S), gets(S), printf(S), putc(S), puts(S), read(S), scanf(S),
write(S)

Diagnostics

fread and fwrite return the number of items read or written. If sizeof
or nitems is non-positive, no characters are read or written and ° is
returned by bothfread andfwrite.

October 10, 1988 Page 1

FREXP (S) FREXP (S)

Name

frexp, ldexp, modf - Splits floating-point number into a mantissa and
an exponent.

Syntax

double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

Description

Every non-zero number can be written uniquely as x * 2n where the
"mantissa" (fraction) x is in the range 0.5 <= I x I < 1.0 and the
"exponent" n is an integer. frexp returns the mantissa of a double
value and stores the exponent indirectly in the location pointed to by
eptr. If value is 0, both results returned by!rexp are 0.

ldexp returns the quantity value*(2**exp).

mod! returns the positive fractional part of value and stores the integer
part indirectly through iptr.

Diagnostics

If ldexp would cause overflow, + HUGE is returned (according to the
sign of value), and errno is set to-ERANGE.

If ldexp would cause underflow, zero is returned and errno is set to
ERANGE.

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

FSEEK(S)

Name

fseek, ftell, rewind - Repositions a file pointer in a stream.

Syntax

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

long ftell (stream)
FILE *stream;

void rewind(stream)
FILE *stream;

Description

FSEEK(S)

fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, or the end of the file, according as
ptrname has the value 0, 1, or 2.

fseek undoes any effects of ungetc (S).

After fseek or rewind, the next operation on an update file may be
either input or output.

ftell returns the current value of the offset relative to the beginning of
the file associated with the named stream. The offset is measured in
bytes.

rewind (stream) is equivalent to fseek (stream, OL, 0), except that no
value is returned.

See Also

Iseek(S), fopen(S), popen(S), ungetc(S)

Diagnostics

fseek returns nonzero for improper seeks, otherwise zero.

October 10, 1988 Page 1

FTW(S)

Name

ftw - Walks a file tree.

Syntax

#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

Description

FTW(S)

ftw recursively descends the directory hierarchy routed in path. For
each object in the hierarchy, ftw calls fn, passing it a pointer to a null­
terminated character string. This string contains the name of the
object, a pointer to a stat structure with information about the object,
and an integer. Possible values for the integer include FTW _F for a
file, FTW _D for a directory, FTW _DNR for a directory that cannot be
read, and FTW _NS for an object for which stat could not be success­
fully executed. These values are defined in the <ftw.h> header file. If
the integer is FTW _DNR, descendants of the directory will not be pro­
cessed. If the integer is FTW _NS, the stat structure will contain mean­
ingless information. For example, a file in a directory with read but
without execute permission could cause FTW _NS to be passed to fn .

ftw visits a directory before visiting any of its descendants. The file
tree traversal continues until the tree is exhausted, fn returns a nonzero
value, or some error is detected withinftw (for example, an I/O error).
If the file tree is exhausted, ftw returns zero. If fn returns a nonzero
value, ftw stops traversing the file tree and returns the value returned
by fn. If ftw detects an error, it returns -1, and sets the error type in
errno.

ftw uses one file descriptor for each level in the tree. depth limits the
number of file descriptors. This argument must not be greater than the
number of file descriptors currently available for use. Zero or nega­
tive values for depth are interpreted as 1. ftw will run more quickly if
depth is at least as large as the number of levels in the tree.

October 10, 1988 Page 1

F1W(S)

See Also

stateS), malloc(S)

Example

The following code is an example of/two

#inc1ude <ftw.h>
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

F1W(S)

int filestatO; /* global procedure to print file status info */

maine argc,argv)
int argc;
char * * argv;
{

}

if (argc == 3) {

}

if ((ftw(argv[lJ, filestat, atoi(argv[2]) != 0 »
perror(' 'ftw' ');

else {

}

printf("usage: %s pathname depth\n",argv[O]);
exit(l);

exit(O);

filestat(arg, sbuf, i)
char *arg;
struct stat *sbuf;
int i;
{

printf("%s ",arg);

switch(i) {
case FTW _F : printf("file "); break;
case FTW _D : printf("directory "); break;
case FTW _DNR : printf("directory non-readable "); break;
case FTW _NS : printf(' 'file no stat' '); break;

default: printf("Bad int value for file\n");
return(l);

}

printf(,' inode=%d uid=%u \n' ',sbuf->scino,sbuf->sCuid);

return (0); /* if foo returns a non-zero arg the ftw stops */

Page 2 October 10, 1988

FTW(S) FTW(S)

Notes

Because ftw is recursive, it can terminate with a memory fault when
applied to very deep file structures.

ftw uses maUoc (S) to allocate dynamic storage during its operation. If
ftw is forcibly terminated (for example, by longjmp being executed by
fn or by an interrupt routine), ftw will not have a chance to free that
storage, and it will remain permanently allocated. A safe way to han­
dle interrupts is to store the fact that an interrupt has occurred, and
have fn return a nonzero value at its next invocation.

October 10, 1988 Page 3

GAMMA (S)

Name

gamma - Performs log gamma function.

Syntax

#include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

GAMMA (S)

gamma returns In 1 r(1 x 1)1. The sign of r(1 xl) is returned in the
external integer signgam. The following C program fragment might
be used to calculate r:

if«y = gamma (x» >LN_MAXDOUBLE)
error ();

y = exp (y) * signgam;

where LN_MAXDOUBLE is the least value that causes exp (S) to return
a range error and is defined in the <values.h> header file.

Diagnostics

For negative integer arguments, a HUGE value is returned and errn.o
is set to EDOM. A message indicating SING error is printed on the
standard error output.

If the correct value would overflow, gamma returns a HUGE value
and errno is set to ERANGE.

These error-handling procedures may be changed with the matherr(S)
function.

See Also

exp(S), matherr(S)

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

GETC (S) GETC (S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream.

Syntax

#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

Description

getc and getchar are macros. getc returns the next character from the
named input stream as an integer. It also moves the file pointer, if
defined, ahead one character in stream. getchar() is identical to
getc (stdin).

fgetc behaves like getc, but is a genuine function, not a macro; it may
therefore be used as an argument. fgetc runs more slowly than getc,
but takes less space per invocation.

getw returns the next word from the named input stream. getw incre­
ments the associated file pointer, if defined, to point to the next word.
The size of a word is the same as an integer and varies from machine
to machine. getw assumes no special alignment in the file.

See Also

ferror(S), fopen(S), fread(S), gets(S), putc(S), scanf(S)

Diagnostics

These functions return the integer constant EOF at the end-of-file or
upon a read error. Because EOF is a valid integer,ferror(S) should be
used to detect getw errors.

October 10, 1988 Page 1

GETC (S) GETC (S)

Notes

stream arguments with side effects are treated incorrectly because
getc is implemented as a macro. In particular, "getc(*f++)" doesn't
work properly. fgetc should lie used instead.

Files written using putw(S) are machine-dependent and may not be
read using getw on a different processor because of possible differ­
ences in word length and byte ordering.

Warning

If the integer value returned by getc, getchar, or fgetc is stored into a
character variable and then compared against the integer constant
EOF, the comparison may never succeed because sign-extension of a
character on widening to integer is machine-dependent.

Page 2 October 10, 1988

GETCWD (S)

Name

getcwd - Get the pathname of current working directory.

Syntax

char *getcwd (pnbuf, maxlen)
char *pnbuf;
int maxlen;

Description

CETCWD (S)

getcwd returns a pointer to the current directory pathname. If pnbuf is
a NULL pointer, getcwd will obtain maxlen bytes of space using
malloc(S). In this case, the pointer returned by getcwd may be used as
the argument in a subsequent call to free (S). If pnbuf is not a NULL
pointer, then the pathname is placed in the space pointed to by pnbuf
and pnbuf is returned.

In all cases, the value of maxlen must be at least two greater than the
length of the pathname to be returned.

getcwd is implemented by using popen (S) to pipe the output of the
pwd(C) command into the specified string space.

See Also

pwd(C), malloc(S), popen(S)

Example

char *cwd, *getcwdO;

if «cwd = getcwd«char *)NULL, 64» == NULL) {
perror(' 'pwd' ');
exit(l);

}
printf("%s\n", cwd);

October 10, 1988 Page 1

GETCWD(S)

Errors

[EINVAL] size is zero

[ENOMEM] no space is available

GETCWD(S)

[ERANGE] size not large enough to hold the path name.

Diagnostics

Returns NULL with ermo set if maxlen is not large enough.

Notes

maxlen must be 2 more than the true length of the pathname.

Page 2 October 10, 1988

GETDENTS (S) GET DENTS (S)

Name

getdents - read directory entries and put in a file system independent
format

Syntax

#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Description

getdents allows heterogeneous directory searching locally and over
networks.

fildes is a file descriptor obtained from an open(S) or dup(S) system
call.

getdents attempts to read nbyte bytes from the directory associated
with fildes and to format them as file system independent directory
entries in the buffer pointed to by buf. Since the file system indepen­
dent directory entries are of variable length, in most cases the actual
number of bytes returned will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent
structure. For a description of this see dirent(F)

On devices capable of seeking, getdents starts at a position in the file
given by the file pointer associated withfildes. Upon return from get­
dents, the file pointer is incremented to point to the next directory
entry.

This system call was developed in order to implement the readdir(S)
routine [for a description see directory (S)], and should not be used for
other purposes.

getdents will fail if one or more of the following are true:

[EBADF]

[EFAULT]

[EINVAL]

October 10, 1988

fildes is not a valid file descriptor open for reading.

Buf points outside the allocated address space.

nbyte is not large enough for one directory entry.

Page 1

GET DENTS (S)

[ENOENT]

[ENOLINK]

[ENOTDIR]

[EIO]

See Also

directory(S)

Diagnostics

GETDENTS (S)

The current file pointer for the directory is not
located at a valid entry.

fildes points to a remote machine and the link to
that machine is no longer active.

fildes is not a directory.

An I/O error occurred while accessing the file sys­
tem.

Upon successful completion a non-negative integer is returned indi­
cating the number of bytes actually read. A value of ° indicates the
end of the directory has been reached. If the system call failed, a -1 is
returned and errno is set to indicate the error.

Notes

Programs using this system call must' be compiled with the -ldir
option.

Page 2 October 10, 1988

GETENV(S)

Name

getenv - Gets value for environment name.

Syntax

char *getenv (name)
char *name;

Description

GETENV(S)

getenv searches the environment list (see environ (M)) for a string of
the form name=value and returns pointer to the value if such a string
is present. Otherwise a NULL pointer is returned.

See Also

sh(C), exec(S)

October 10, 1988 Page 1

GETGRENT(S) GETGRENT (S)

Name

getgrent, getgrgid, getgmam, setgrent, endgrent - Get group file entry.

Syntax

#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

int setgrent ();

int endgrent ();

Description

getgrent, getgrgid and getgrnam each return pointers. The fonnat of
the structure is defined in /usr/include/ grp.h.

The members of this structure are:

The name of the group.

The encrypted password of the group.

The numerical group ID.

Null-tenninated vector of pointers to the indivi­
dual member names.

getgrent reads the next line of the file, so successive calls may be used
to search the entire file. getgrgid and getgrnam search from the
beginning of the file until a matching gid or name is found, or end-of­
file is encountered.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. endgrent may be called to close the group file
when processing is complete.

Files

/etc/group

October 10, 1988 Page 1

GETGRENT (S) GETGRENT (S)

See Also

getlogin(S), getpwent(S), group(F)

Diagnostics

A null pointer (0) is returned on end-of-file or error.

Notes

All information is contained in a static area, so it must be copied if it
is to be saved.

Page 2 October 10, 1988

GETLOGIN (S) GETLOGIN (S)

Name

getlogin - Gets login name.

Syntax

char *getlogin ();

Description

getlogin returns a pointer to the login name as found in /etc/utmp. It
may be used in conjunction with getpwnam to locate the correct pass­
word file entry when the same user ID is shared by several login
names.

If getlogin is called within a process that is not attached to a terminal
device, it returns NULL. The correct procedure for determining the
login name is to call cllserid, or to call getlogin and if it fails, to call
getpwllid.

Files

/etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(F)

Diagnostics

Returns NULL if name not found.

Notes

The return values point to static data whose content is overwritten by
each call.

October 10, 1988 Page 1

GETOPT(S)

Name

getopt - Gets option letter from argument vector.

Syntax

#include <stdio.h>

int getopt (argc, argv, optstring)
int argc;
char *argv[];
char *optstring;
extern char *optarg;
extern int optind, opterr;

Description

GETOPT(S)

getopt returns the next option letter in argv that matches a letter in
optstring. optstring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument that
mayor may not be separated from it by whitespace. optarg is set to
point to the start of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be pro­
cessed. Because optind is external, it is normally initialized to zero
automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption
argument), getopt returns EOE The special option -- may be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped.

Diagnostics

getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter not included in optstring. This
error message may be disabled by setting opterr to zero.

October 10, 1988 Page 1

GETOPT(S) GETOPT(S)

Examples

The following code fragment shows how one might process the argu­
ments for a command that can take the mutually exclusive options a
and b, and the options f and 0, both of which require arguments:

Page 2

main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
~xtern char *optarg;

while «c = getopt (argc, argv, "abf:o:' ')) != EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bprocO;

break;
case 'f':

case '0':

ifile = optarg;
break;

ofile = optarg;
bufsiza = 512;
break;

case '?':
errflg++;

}
if (errflg) {

)

J

fprintf (stderr, "usage: ... ");
exit (S);

for(; optind < argc; optind++) {
if (access (argv[optind], 4)) {

October 10, 1988

GETPASS (S)

Name

getpass - Reads a password.

Syntax

char *getpass (prompt)
char *prompt;

Description

GETPASS (S)

get pass reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null­
terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most eight characters.

Files

/dev/tty

Notes

The return value points to static data whose content is overwritten by
each call.

October 10, 1988 Page 1

GETPID (S) GETPID (S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent pro­
cess IDs.

Syntax

int getpid ()

int getpgrp ()

int getppid ()

Description

getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

See Also

exec(S), fork(S), intro(S), setpgrp(S), signal(S)

October 10, 1988 Page 1

GETPW(S)

Name

getpw - Gets password for a given user ID.

Syntax

int getpw (uid, but)
int uid;
char *buf;

Description

GETPW(S)

getpw searches the password file for the uid, and fills in buf with the
corresponding line; it returns nonzero if uid could not be found. The
line is null-terminated. uid must be an integer value.

Files

/etc/passwd

See Also

getpwent(S), passwd(F)

Diagnostics

Returns nonzero on error.

Notes

This routine is included only for compatibility with prior systems and
should not be used; see getpwent (S) for routines to use instead.

October 10, 1988 Page 1

GETPWENT (S) GETPWENT (S)

Name

getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets password
file entry.

Syntax

#include <pwd.h>

struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ();

int endpwent ();

Description

getpwent, getpwuid and getpwnam each returns a pointer to a struc­
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in /usr/include/pwd.h.

The fields have meanings described in passwd(F). (The pw _comment
field is unused.)

getpwent reads the next line in the file, so successive calls can be used
to search the entire file. getpwuid and getpwnam search from the
beginning of the file until a matching uid or name is found, or EOF is
encountered.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. endpwent may be called to close the pass­
word file when processing is complete.

Files

/etc/passwd

See Also

getlogin(S), getgrent(S), passwd(F)

October 10, 1988 Page 1

GETPWENT(S) GETPWENT(S)

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All infonnation is contained in a static area so it must be copied if it is
to be saved.

Page 2 October 10, 1988

GETS (S)

Name

gets, fgets - Gets a string from a stream.

Syntax

#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, D, stream)
char *s;
int n;
FILE *stream;

Description

GETS (S)

gets reads a string into s from the standard input stream stdin. The
function replaces the newline character at the end of the string with a
null character before copying to s. gets returns a pointer to s.

fgets reads characters from the stream until a newline character is
encountered or until n-l characters have been read. The characters
are then copied to the string s. A null character is automatically
appended to the end of the string before copying. fgets returns a
pointer to s.

See Also

ferror(S), fopen(S), fread(S), getc(S), puts(S), scanf(S)

Diagnostics

gets and fgets return the constant pointer NULL upon end-of-file or
error.

Notes

gets deletes the newline ending its input, butfgets keeps it.

October 10, 1988 Page 1

GETUID (S) GETUID (S)

Name

getuid, geteuid, getgid, getegid - Gets real user, effective user, real
group, and effective group IDs.

Syntax

unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

Description

getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

See Also

intro(S), setuid(S)

October 10, 1988 Page 1

GETUT(S) GETUT(S)

Name

getutent, getutid, getutline, pututline, setutent, endutent, utmpname -
Accesses utmp file entry.

Syntax

#include <sys/types.h>
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

Description

getutent, getutid, and getutline each return a pointer to the following
type of structure:

struct utmp {

} ;

char uCuser[8]; /*User login name*/
char uCid[4]; /*/etc/inittab id (usually line #)*/
char uCline[12]; /*device name (console, lnxx)*/
short uCpid; /*process id */
short uCtype; /*type of entry*/
struct exiCstatus {

short e_termination /*Process termination status*/
short e_exit; /*The exit status of a process*/

} uCexit; /*The exit status of a process*/
/*marked as DEAD_PROCESS.*/

time_t uCtime; /*Time entry was made*/

getutent reads the next entry from a utmp-like file. If the file is not
already open, getutent opens it; when getutent reaches the end of the
file, it fails.

October 10, 1988 Page 1

GETUT(S) GETUT(S)

getutid searches forward from the current point in the utmp file until
it finds an entry with a ut type matching id -> ut type if the type
specified is RVN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If
the type specified in id is INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, or DEAD_PROCESS, then getutid returns a pointer to
the first entry whose type matches one of these four types and whose
ut id matches id -> ut id. If the end of the file is reached without a
match, getutid fails. -

getutline searches forward from the current point in the utmp file
until it reaches an entry of the type LOGIN_PROCESS or
USER_PROCESS which has an ut line string matching the line ->
ut line string. If the end of the file-is reached without a match, getut­
line fails.

pututline writes out the supplied utmp structure into the utmp file. If
pututline finds that it is not already in the proper place in the file, it
uses getutid to search forward for the proper place. A user of pututline
could search for the proper place using one of the getut routines. If
pututline does not find a matching slot for the new entry, it adds a new
entry to the end of the file.

setutent resets the input stream to the beginning of the file. This
should be done before each search for a new entry if the user desires
that the entire file be examined.

endutent closes the currently opened file.

utmpname allows the user to change the name of the file examined,
from /etc/utmp to any other file. Generally, this other file will be
/etc/wtmp. If this file does not exist, it will not be apparent until the
first attempt to reference the file is made. utmpname does not open
the file; it just closes the old file if open and saves the new file name.

Files

/etc/utmp
/etc/wtmp

See Also

ttyslot(S), utmp(F)

Diagnostics

A NULL pointer is returned upon failure to read (either because of per­
missions or the end of the file) or upon failure to write.

Page 2 October 10, 1988

GETUT(S) GETUT(S)

Comments

With these routines, the most current entry is saved in a static struc­
ture. Multiple accesses require that the structure be copied before
further accesses are made. Each call to either getutid or getutline sees
the routine examine the static structure before performing more I/O. If
the contents of the static structure match what the routine is searching
for, the search stops. For this reason, to use getutline to search for
multiple occurrences, the user must to remove the static after each
success, or getutline will just return the same pointer over and over
again.

There is one exception to the rule of removing the structure before
further reads are done: the implicit read done by pututline (in cases
where it finds that it is not already in the correct place in the file) will
not hurt the contents of the static structure returned by getutent, getu­
tid, or getutline routines if the user has just modified those contents
and passed the pointer back to pututline .

These routines used buffered standard I/O for input, but pututline uses
an unbuffered non-standard write to avoid race conditions between
processes trying to modify the utmp and wtmp files.

October 10, 1988 Page 3

HSEARCH(S) HSEARCH(S)

Name

hsearch, hcreate, hdestroy - Manages hash search tables.

Syntax

#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

Description

hsearch is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. This routine returns a pointer into a hash table indicat­
ing the location at which an entry can be found. item is a structure of
type ENTRY (defined in the <search.h> header file) containing two
pointers:

item.key points to the comparison key

item. data points to any other data associated with the comparison
key

Pointers to types other than character should be cast to pointer-to­
character. action is a member of an enumeration type ACTION indi­
cating the disposition of the entry if it cannot be found in the table.
ENTER indicates that the item should be inserted in the table at the
appropriate point. FIND indicates that no entry should be made. The
return of a NULL pointer indicates unsuccessful resolution.

hcreate makes sufficient space for the table, and must be called before
hsearch is used. nel is an estimate of the highest number of entries the
table will contain. The algorithm can adjust this number upwards in
order to obtain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another
call to hcreate.

October 10, 1988 Page 1

HSEARCH(S) HSEARCH(S)

hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other options available which the
user may select by compiling the hsearch source with the following
symbols defined to the preprocessor:

DIY
Use the remainder modulo table size as the hash function instead
of the multiplicative algorithm.

USCR
Use a User Supplied Comparison Routine for determining table
membership. The routine should be named hcompar and should
behave in a manner similar to strcmp (see string (S).

CHAINED
Use a linked list to resolve collisions. If this option is selected, the
user has the following options:

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in des­
cending order.

In addition, there are preprocessor flags for obtaining debugging prin­
tout (-DDEBUG) and for including a test driver in the calling routine
(-DDRIVER).

Return Value

hsearch returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

See Also

bsearch(S), Isearch(S), malloc(S), string(S), tsearch(S).

Example

The following program demonstrates the use of the hsearch(S) func­
tions. The program accepts two lists, separated by a blank line. The
first list is a record consisting of a name, age and room number,
separated by spaces. Each record should be on a separate line. The
second list should be names only, one to a line. The program uses
hsearchO to search for the names in the first list, and print the match­
ing data if the name is found.

Page 2 October 10, 1988

HSEARCH(S) HSEARCH(S)

#include <stdio.h>
#include <search.h>

struct info { /*This is the info stored in the table*/
int age, room; /* other than the key. */

} ;
#define NUM_EMPL 1000 /* # of elements in search table*/

main ()
{

/* space to store strings */
static char string_space [NUM_EMPL *20];
/* space to store employee info */
static struct info info_space[NUM_EMPL];
/*next avail space in string_space */
char *stcptr = string_space;
/*next avail space in info_space*/
struct info *info_ptr = info_space;
ENTRY item, * found_item , *hsearch ();
/* name to look for in table */
char name_to_find[30];
int i = 0;

/* create table */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr->age,

&info_ptr ->room == 3) != EOF
&& i++ < NUM_EMPL) {
/*put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(stcptr) + 1;
info _ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if «found_item = hsearch(item, FIND» != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found_item->key,

} else {

«struct info *)found_item->data)->age,
«struct info *)found_item->data)->room);

(void)printf("no such employee % s\n " ,
name_to_find)

October 10, 1988 Page}

HSEARCH(S) HSEARCH(S)

Diagnostics

Returns a NULL pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

Notes

Only one hash search table may be active at any given time.

Warning

hsearch and hcreate use malloc (S) to allocate space.

Page 4 October 10, 1988

HYPOT(S)

Name

hypot - Detennines Euclidean distance.

Syntax

#include <math.h>

double hypot (x, y)
double x, y;
struct {double x, y};

Description

hypot returns:

sqrt(x*x + y*y)

See Also

sqrt in exp(S), matherr(S)

Diagnostics

HYPOT(S)

When the correct value reaches overflow, hypot returns a HUGE value
and sets errno to ERANGE.

These error-handling procedures may be changed with the matherr(S)
function.

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

IOCTL (S)

Name

ioctl - Controls character devices.

Syntax

#include <sys/ioctl.h>

int ioctl(flldes, request, arg)
int flldes;

Description

IOCTL (S)

ioetl performs a variety of functions on character special files (dev­
ices). The arguments request and arg depend on which device ioetl is
being applied to. The writeups of various devices in Section M dis­
cuss how ioetl applies to them.

ioetl fails if one or more of the following are true: .

fildes is not a valid open file descriptor. [EBADF]

fildes is not associated with a character special device. [ENOTIY]

request or arg is not valid. See termio (M). [EINV AL]

A signal was caught during the ioetl system call. [EINTR]

Return Value

If an error has occurred, a value of -1 is returned and errno is set to
indicate the error.

See Also

tty(M), termio(M), screen(HW)

October 10, 1988 Page 1

KILL (S)

Name

kill - Sends a signal to a process or a group of processes.

Syntax

#include <signal.h>

int kill (pid, sig)
int pid, sig;

Description

KILL (S)

kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid.
The signal that is to be sent is specified by sig and is either one from
the list given in signal (S), or 0. If sig is ° (the null signal), error
checking is performed but no signal is actually sent. This can be used
to check the validity of pid .

The real or effective user ID of the sending process must match the
effective user ID of the receiving process unless, the effective user ID
of the sending process is super-user, or the process is sending to itself.

The processes with a process ID of ° and a process ID of 1 are special
processes (see intro(S») and will be referred to below as procO and
proc1 respectively.

If pid is greater than zero, sig will be sent to the process whose pro­
cess ID is equal to pid. pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1
whose process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding procO and proc1 whose real
user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig
will be sent to all processes excluding procO and proc1.

If pid is negative but not -1, sig will be sent to all processes whose
process group ID is equal to the absolute value of pid .

October 10, 1988 Page 1

KILL (S) KILL (S)

kill will fail and no signal will be sent if one or more of the following
are true:

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified by pid.
[ESRCH]

The sending process is not sending to itself, its effective user ID is
not super-user, and its effective user ID does not match the real
user ID of the receiving process. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

kiU(C), getpid(S), setpgrp(S), signal(S)

Page 2 October 10, 1988

L3TOL (S) L3TOL (S)

Name

13tol, Ito13 - Converts between 3-byte integers and long integers.

Syntax

void 13tol (lp, cp, n)
long *Ip;
char *cp;
int n;

void ltol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

Description

13tol converts a list of n 3-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp.

Itol3 performs the reverse conversion from long integers (lp) to 3-byte
integers (cp).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

See Also

filesystem(F)

October 10, 1988 Page 1

LINK (S) LINK (S)

Name

link - Links a new filename to an existing file.

Syntax

int link (pathl, path2)
char *pathl, *path2;

Description

path1 points to a pathname naming an existing file. path2 points to a
pathname giving the new filename to be linked. link makes a new
link by creating a new directory entry for the existing file using the
new name. The contents of the existing file can then be accessed
using either name.

link will fail and no link will be created if one or more of the follow­
ing are true:

A component of either path prefix is not a directory. [ENOTDIR]

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by path1 does not exist. [ENOENT]

The link named by path2 already exists. [EEXIST]

The file named by path1 is a directory and the effective user ID is
not super-user. [EPERM]

The link named by path2 and the file named by path1 are on
different logical devices (file systems). [EXDEV]

path2 points to a null pathname. [ENOENT]

The requested link requires writing in a directory with a mode that
denies write permission. [EACCES]

The requested link requires writing in a directory on a read-only
file system. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

October 10, 1988 Page 1

LINK (S) LINK (S)

The maximum number of lines to a file is exceeded. [EMLINK]

The directory to contain the file cannot be extended. [ENOSPC]

Return Value

When the linking procedure is successfully completed, a value of ° is
returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

See Also

In(C), unlink(S)

Page 2 October 10, 1988

LOCK(S)

Name

lock - Locks a process in primary memory.

Syntax

int lock(flag);
int flag;

Description

LOCK(S)

If the flag argument is nonzero, the process executing this call will not
be swapped except if it is required to grow. If the argument is zero,
the process is unlocked. This call may only be executed by the super­
user.

Notes

locked processes interfere with the compaction of primary memory
and can cause deadlock. Systems with small memory configurations
should avoid using this call. It is best to lock process soon after boot­
ing because that will tend to lock them into one end of memory.

This feature is a XENIX specific enhancement and may not be present
in all UNIX implementations. This routine must be linked using the
linker option -Ix.

October 10, 1988 Page 1

LOCKF(S)

Name

locld - Provide semaphores and record locking on files.

Syntax

#include <unistd.h>

int lockf(fildes, function, size)
int fildes, function;
long size;

Description

LOCKF(S)

lockf locks a specified region of the file given by the file descriptor,
fildes, against access by all other processes. Other processes which
attempt to use the locked region will either return an error or wait
until the region is unlocked. More than one region in a file can be
locked. When the process closes the file (or terminates), all locks are
removed. See fcntl (S) for more information about record locking.

fildes is an open file descriptor. The file descriptor must have
O_WRONLY or O_RDWR permission in order to establish a lock with
the lockf function call.

The function argument specifies what action to take. The possible
values are defined in <unistd.h> and as follows:

F_ULOCK
Unlock a previously locked region.

F_LOCK
Lock the region for exclusive use. If the region is not available,
the calling process sleeps until the region is available.

F_TLOCK
Test for locks, then lock the region for exclusive use. If the
region is not available, lockf returns immediately and sets errno
toEAGAIN .

F_TEST
Test the region for other processes' locks. This argument is used
to determine whether or not another process has placed a lock
on the specified region.

The size argument is the number of contiguous bytes to be locked or
unlocked. The region to be locked starts at the current position in the
file and extends forward for a positive size and backward for a nega­
tive size (the preceding bytes up to but not including the current
offset). If the size is 0, the region extends from the current position in

October 10, 1988 Page 1

LOCKF(S) LOCKF(S)

the file to the current or future end of the file. An area does not need
to be allocated to the file in order to be locked as such locks may exist
past the end-of-file.

The sections locked with F _LOCK or F _ TLOCK may, in whole or in
part, contain or be contained by a previously locked region for the
same process. When this occurs, or if overlapping regions occur, the
regions are combined. If the request requires that a new element be
added to the table of active locks and this table is already full, an
[EDEADLK] (or [EDEADLOCK]) error is returned and the new
region is not locked.

F _LOCK and F _TLOCK requests differ only by the action taken if the
resource is not available. F _LOCK will cause the calling process to
sleep until the resource is available. F _TLOCK will cause the function
to return a -1 and set errno to [EAGAIN] error if the region is already
locked by another process.

F _ ULOCK requests may, in whole or in part, release one or more
locked regions controlled by the process. When regions are not fully
released, the remaining regions are still locked by the process.
Releasing the center region of a locked region requires an additional
element in the table of active locks. If this table is full, an
[EDEADLK] (or [EDEADLOCK]) error is returned and the requested
region is not released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Therefore, calls to loekf(S) or fentl (S) scan for a deadlock
prior to sleeping on a locked resource. An [EDEADLK] (or
[EDEADLOCK]) error return is made if sleeping on the locked
resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(S)
routine may be used to provide a timeout facility in applications that
require this facility.

The loekf routine will fail if one or more of the following are true:

fildes is not a valid open descriptor. [EBADF]

Page 2

cmd is F _ TLOCK or F _TEST and the region is already locked by
another process. [EAGAn~]

emd is F LOCK or F TLOCK and a deadlock occurs. Also the emd
is either- of the above or F _ULOCK, and there are not enough
entries in the system lock table to honor the request. [EDEADLK]
or [EDEADLOCK]

October 10, 1988

LOCKF(S) LOCKF (S)

Return Values

When the lock routine is successfully completed, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

See Also

alarm(S), chmod(S), close(S), createS), fcntl(S), open(S), read(S),
write(S),

Notes

Record and file locking should not be used in combination with the
standard I/O routines, such as jopen(S), jread(S), and fwrite(S).
Instead, the more primitive, non-buffered routines such as open(S)
should be used. Unexpected results may occur in processes that do
buffering in the user address space. The process may later read/write
data which is or was locked.

October 10, 1988 Page 3

LOCKING (S) LOCKING (S)

Name

locking - Locks or unlocks a file region for reading or writing.

Syntax

#include <sys/types.h>
#include <sys/locking.h>

int locking(fildes, mode, size);
int fildes, mode;
long size;

Description

locking allows a specified number of bytes in a file to be controlled by
the locking process. Other processes which attempt to read or write a
portion of the file containing the locked region may sleep until the
area becomes unlocked depending upon the mode in which the file
region was locked.

A file must be open with read or read/write permission for a read lock
to be performed. Write or read/write permission is required for a write
lock. If either of these conditions are not met, the lock will fail with
the error EINV AL.

A process that attempts to write to or read a file region that has been
locked against reading and writing by another process (using the
LK_LOCK or LK_NBLCK mode) will sleep until the region of the file
has been released by the locking process.

A process that attempts to write to a file region that has been locked
against writing by another process (using the LK_RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the locking process, but a read request for that file region
will proceed normally.

A process that attempts to lock a region of a file that contains areas
that have been locked by other processes will sleep if it has specified
the LK_LOCK or LK_RLCK mode in its lock request, but will return with
the error EACCES if it specified LK_NBLCK or LK_NBRLCK.

fildes is the value returned from a successful creat, open, dup, or pipe
system calL

October 10, 1988 Page 1

LOCKING(S) LOCKING (S)

mode specifies the type of lock operation to be performed on the file
region. The available values for mode are:

LK_UNLCKO
Unlocks the specified region. The calling process releases a region
of the file it had previously locked.

LK_LOCK 1
Locks the specified region. The calling process will sleep until the
entire region is available if any part of it has been locked by a
different process. The region is then locked for the calling process
and no other process may read or write in any part of the locked
region. (lock against read and write).

LK NBLCK2
Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead of
waiting for the region to become available for locking (nonblock­
ing lockrequest).

LK_RLCK3
Same as LK_LOCK except that the locked region may be read by
other processes (read permitted lock).

LK_NBRLCK4
Same as LK_NBLCK except that the locked region may be read by
other processes (nonblocking, read permitted lock).

The locking utility uses the current file pointer position as the starting
point for the locking of the file segment. So a typical sequence of
commands to lock a specific range within a file might be as follows:

fd=open("datafile",O_RDWR);
lseek(fd, 200L, 0);
locking(fd, LK_LOCK, 200L);

Accordingly, to lock or unlock an entire file a seek to the beginning of
the file (position 0) must be done and then a locking call must be exe­
cuted with a size of O.

size is the number of contiguous bytes to be locked or unlocked. The
region to be locked starts at the current offset in the file. If size is 0,
the entire file (up to a maximum of 2 to the power of 30 bytes) is
locked or unlocked. size may extend beyond the end of the file, in
which case only the process issuing the lock call may access or add
information to the file within the boundary defined by size.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process' locked area.
Thus calls to locking, read, or write scan for a deadlock prior to sleep-

Page 2 October 10, 1988

LOCKING (S) LOCKING (S)

ing on a locked region. An EDEADLK (or EDEADLOCK) error return
is made if sleeping on the locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a pre­
viously locked region for the same process. When this occurs, or
when adjacent regions are locked, the regions are combined into a sin­
gle area if the mode of the lock is the same (Le.; either read permitted
or regular lock). If the mode of the overlapping locks differ, the
locked areas will be assigned assuming that the most recent request
must be satisfied. Thus if a read only lock is applied to a region, or
part of a region, that had been previously locked by the same process
against both reading and writing, the area of the file specified by the
new lock will be locked for read only, while the remaining region, if
any, will remain locked against reading and writing. There is no arbi­
trary limit to the number of regions which may be locked in a file.
There is however a system-wide limit on the total number of locked
regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process. Release
of the center section of a locked area requires an additional locked
element to hold the separated section. If the lock table is full, an error
is returned, and the requested region is not released. Only the process
which locked the file region may unlock it. An unlock request for a
region that the process does not have locked, or that is already
unlocked, has no effect. When a process terminates, all locked regions
controlled by that process are unlocked.

If a process has done more than one open on a file, all locks put on the
file by that process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or
pipes, read/write operations on these types of files will ignore the
locks. Locks may not be applied to a directory.

See Also

createS), open(S), read(S), write(S), dupeS), close(S), Iseek(S)

Diagnostics

locking returns the value (int) -1 if an error occurs. If any portion of
the region has been locked by another process for the LK_LOCK and
LK_RLCK actions and the lock request is to test only, errno is set to
EAGAIN when used with XENIX System V binaries. If the binary
using this routine is a XENIX 3.0 binary, this errno is set to EACCES.
If the file specified is a directory, errno is set to EACCES. If locking
the region would cause a deadlock, errno is set to EDEADLK (or
EDEADLOCK). If there are no more free internal locks, errno is set to
EDEADLK (or EDEADLOCK).

October 10, 1988 Page 3

LOCKING (S)

Notes

This routine must be linked with the linker option -Ix.

Page 4

LOCKING(S)

October 10, 1988

LOGNAME (S) LOGNAME (S)

Name

logname - Finds login name of user.

Syntax

char * logname();

Description

logname returns the current user name from login to stdout.

Files

Jete/profile

See Also

env(C), login(M), profile(M), environ(M)

October 10, 1988 Page 1

LSEARCH(S)

Name

lsearch, lfind - Perfonns linear search and update.

Syntax

#include <stdio.h>
#include <search.h>
char *Isearch (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar)O;

char *Ifind (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned width;
int (*compar) ();

Description

LSEARCH (S)

lsearch is a linear search routine generalized from Knuth (6.1) Algo­
rithm Q. It returns a pointer into a table indicating the location at
which a datum may be found. If the item does not occur, it is added at
the end of the table. The first argument is a pointer to the datum to be
located in the table. The second argument is a pointer to the base of
the table. The third argument is the address of an integer containing
the number of items in the table. It is incremented if the item is added to the table. The fourth argument is the width of an element in bytes.
The last argument is the name of the comparison routine. It is called
with two arguments which are pointers to the elements being com­
pared. The routine must return zero if the items are equal, and
nonzero otherwise.

lfind is the same as lsearch except that if the datum is not found, it is
not added to the table.

October 10, 1988 Page 1

LSEARCH (S) LSEARCH (S)

See Also

bsearch(S), hsearch(S), qsort(S), tsearch(S)

Example

This fragment of code will read:::; TAB SIZE strings of length:::; ELSIZE
and store them in a table, eliminating duplicates:

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line [ELSIZE] , tab [TAB SIZE] [ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();
while (fgets(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)
(void) lsearch(line, (char *)tab, &nel,

ELSIZE, strcmp);

Diagnostics

If the datum searched for is found, both lsearch and !find return a
pointer to it. Otherwise, !find returns NULL and lsearch returns a
pointer to the newly added element.

Notes

The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values being
compared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element

Unpredictable events can occur if there is not enough room in the
table to add a new item.

Page 2 October 10, 1988

LSEEK (S)

Name

lseek - Moves read/write file pointer.

Syntax

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

Description

LSEEK (S)

fildes is a file descriptor returned from a creat, open, dup, or fCJul
system call. lseek sets the file pointer associated with fildes as fol­
lows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as meas­
ured in bytes from the beginning of the file is returned.

lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

fildes is not an open file descriptor. [EBADF]

fildes is associated with a pipe or fifo. [ESPIPE]

whence is not 0, 1 or 2. [EINV AL and SIGSYS signal]

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer
associated with such a device is undefined.

Return Value

Upon successful completion, a nonnegative integer indicating the file
pointer value is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

October 10, 1988 Page I

LSEEK(S)

See Also

creat(S), dup(S), fcntl(S), open(S)

Page 2

LSEEK (S)

October 10, 1988

MALLOC(S)

Name

malloc, free, realloc, calloc - Allocates main memory.

Syntax

char *malloc(size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

Description

MALLOC(S)

There are two versions of the mal/oe(S) package. Both versions are
documented in these mal/oe(S) manual pages; the description for the
other package starts on page 3. This portion of the manual page docu­
ments the standard, default mal/oe (S) package. This version of mal­
loe and free provide a simple general-purpose memory allocation
package. mal/oe returns a pointer to a block of at least size bytes
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
mal/oe; this space is made available for further allocation, but its con­
tents are left undisturbed.

Undefined results will occur if space assigned by mal/oe is overrun or
if some random number is handed to free.

mal/Dc allocates the first contiguous reach of free space found in a cir­
cular search from the last block allocated or freed, coalescing adjacent
free blocks as it searches. It calls sbrk (see sbrk(S)) to get more
memory from the system when there is no suitable space already free.

real/oe changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents will
be unchanged up to the lesser of the new and old sizes. If no free
block of size bytes is available in the storage arena, then real/oe will
ask maUDe to enlarge the arena by size bytes and will then move the
data to the new space.

October 10, 1988 Page 1

MALLOC(S) MALLOC(S)

reaUoc also works if ptr points to a block freed since the last call of
maUoc, reaUoc, or caUoc; thus sequences of free, maUoe and reaUoc
can exploit the search strategy of maUoc to do storage compaction.

caUoe allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

See Also

brkct1(S), malloc(S), sbrk(S)

Diagnostics

maUoc, reaUoc and caUoe return a null pointer (0) if there is no avail­
able memory or if the area has been detectably corrupted by storing
outside the bounds of a block. When reaUoc returns 0, the block
pointed to by ptr may be destroyed.

Note

As noted, maUoe calls sbrk to allocate memory. Since sbrk takes a
signed integer as its argument, maUoe will fail if an attempt is made to
allocate more memory than a signed integer will hold (32K -1).

Search time increases when many objects have been allocated; that is,
if a program allocates but never frees, then each successive allocation
takes longer. For an alternate and more flexible implementation see
the maUoc (S) documented on pages 3-5 of this manual entry.

Page 2 October 10, 1988

MALLOC (S) MALLOC(S)

Name

malloc, free, realloc, calloc, mall opt, mallinfo - Allocates main
memory quickly.

Syntax

#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfoO

Description

There are two versions of the maUoe(S) package. This is the library
version which provides a simple general-purpose memory allocation
package, that runs considerably faster than the other malloe(S) pack­
age. Both versions are documented in these maUoe (S) manual pages;
the description of the standard default package starts on page 1.

This maUoe(S) package is found in the library "malloc" and is loaded
when the option -Imalloc is used with ee(CP) or Zd(CP).

maUoe returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by
maUoe; after free is performed this space is made available for further
allocation, and its contents destroyed (see maUopt below for a way to
change this behavior).

Undefined results occur if the space assigned by maUoe is overrun or
if some random number is handed to free.

October 10, 1988 Page 3

MALLOC(S) MALLOC(S)

realloe changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents will
be unchanged up to the lesser of the new and old sizes.

calloc allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

mallopt provides for control over the allocation algorithm. The avail­
. able values for emd are:

M_MXFAST
Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is O.

M_NLBLKS
Set numlblks to value. The above mentioned "large
groups" each contain numlblks blocks. numlblks must be
greater than O. The default value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than
maxfast are considered to be rounded up to the nearest
multiple of grain. grain must be greater than O. The
default value of grain is the smallest number of bytes
which will allow alignment of any data type. value will
be rounded up to a multiple of the default when grain is
set.

M_KEEP Preserve data in a freed block until the next malloe, real­
loe, or calloc. This option is provided only for compati­
bility with the old version of malloc and is not recom­
mended.

These values are defined in the <maUoc.h> header file.

mallopt may be called repeatedly, but may not be called after the first
small block is allocated.

mallinfo provides instrumentation describing space usage. It returns
the structure:

struct mallinfo
int arena;

Page 4

int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

/* total space in arena *1
/* number of ordinary blocks * /
/* number of small blocks */
/* space in holding block headers * /
/* number of holding blocks */
/* space in small blocks in use * /
/* space in free small blocks * /
/* space in ordinary blocks in use * /
/* space in free ordinary blocks * /
/* space penalty if keep option * /

October 10, 1988

MALLOC (S) MALLOC (S)

/* is used */

This structure is defined in the <malloc.h> header file.

Here is an example program code segment for the mallinfo function:

#include <stdio.h>
#include <malloc.h>

mainO
{

char *malloc, *cp;
struct mallinfo minfo;

if « cp = malloc(1 024)) == NULL)
{
perror("Malloc ");
exit(1);
}

minfo = mallinfoO;
printf("%d %d %dO, minfo.arena, minfo.ordblks, minfo.uordblks);

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

See Also

XENIX Programmer's Guide
brkctl(S), malloc(S), sbrk(S)

Diagnostics

malloe, realloe and ealloe return a NULL pointer if there is not
enough available memory. When realloe returns NULL, the block
pointed to by ptr is left intact. If maUopt is called after any allocation
or if emd or value are invalid, non-zero is returned. Otherwise, it
returns zero.

Warnings

This package usually uses more data space than the other maUoe (S).

The code size is also bigger than the other maUoe(S).

October 10, 1988 Page 5

MALLOC(S) MALLOC(S)

Note that unlike the other malloc (S), this package does not preserve
the contents of a block when it is freed, unless the M_KEEP option of
mallopt is used.

Undocumented features of the other malloc(S) have not been dupli­
cated.

These routines must be linked with the -imalloc linker option.

Page 6 October 10, 1988

MATHERR (S)

Name

matherr - Error-handling function.

Syntax

#include <math.h>

int math err (x)
struct exception *x;

Description

MATHERR (S)

matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors,
by including a function named matherr in their programs. matherr
must be of the form described above. When an error occurs, a pointer
to the exception structure x will be passed to the user-supplied math­
err function. This structure, which is defined in the <math.h> header
file, is as follows:

struct exception {

} ;

int type;
char *name;
double arg 1, arg2, retval;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header
file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the func­
tion that incurred the error. The variables argl and arg2 are the argu­
ments with which the function was invoked. retval is set to the
default value that will be returned by the function unless the user's
matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will
be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the math functions involved, will be invoked
upon error. These procedures are also summarized in the table below.

October 10, 1988 Page 1

MATHERR (S) MATHERR (S)

In every case, errno is set to EDaM or ERANGE and the program con­
tinues.

Example

#inc1ude <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

j*
* change sqrt to return sqrt(-arg 1), not 0
*j
if (!strcmp(x->name, "sqrt"» {

x->retval = sqrt(-x->argl);
return (0);

}

j*
* print message and set ermo
*j

case SING:
j*
* all other domain or sing errors,
* print message and abort
*j

fprintf(stderr, "domain error in %s\n", x->name);
abort();

Page 2

case PLOSS:
j*
* print detailed error message
*j

fprintf(stderr, "loss of significance in %s(%g) = %g\n",
x->name, x->arg1, x->retval);

}

return (1);
j*
* take no other action
*j

return (0);
j*
* all other errors, execute default procedure
*j

October 10, 1988

MATHERR (S) MATHERR (S)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - M,O *
yO, yl, yn (arg:::; 0 M,-H

EXP: - H 0

LOG, LOG 10:

(arg < 0) M,-H - - - - -
(arg = 0) - M,-H - - - -

POW: ±H 0

neg ** non-int M,O - - - - -
0** non-pos

SQRT: M,O

GAMMA: - M,H H

HYPOT: - H

SINH: ±H -

COSH: H

SIN, COS, TAN: - - M,O *
ASIN,ACOS,

ATAN2: M,O - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.
-H -HUGE is returned.
±II HUGE or -HUGE is returned.
o 0 is returned.

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 3

MEMORY(S) MEMORY(S)

Name

memccpy, memchr, memcmp, memcpy, memset - Memory operations.

Syntax

#include <memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n;

char *memchr (s,c,n)
char *s;
int c, n;

int memcmp (sl, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

Description

These functions operate as efficiently as possible on memory areas;
however, they do not check for the overflow of any receiving memory
area. Memory areas are arrays of characters bounded by 2. count, not
terminated by a null character.

memccpy copies characters from memory area s2 into sl, stopping
after the first occurrence of character c has been copied, or after n
characters have been copied, whichever comes first. It returns a
pointer to the character after the copy of c in sl. If c was not found in
the first n characters of s2 , memccpy returns a NULL pointer.

memchr returns a pointer to the first occurrence of character c in the
first n characters of memory area s. If c does not occur, this function
returns a NULL pointer.

October 10, 1988 Page 1

MEMORY(S) MEMORY (5)

memcmp compares its arguments, looking at the first n characters
only, and returns an integer. This integer will be less than, equal to, or
greater than 0 according to whether sl is lexicographically less than,
equal to, or greater than s2.

memcpy copies n characters from memory area s2 to sl. It returns sl.

memset sets the first n characters in memory area s to the value of
character c. It returns s.

These routines are declared in the <memory.h> header file.

Notes

memcmp uses native character comparison, which is signed on some
systems and unsigned on others; therefore, the sign of the value
returned is device-dependent when one of the characters has its high­
order bit set.

Character movement is performed differently in different implementa­
tions, so overlapping moves may yield unexpected results.

Page 2 October 10, 1988

MKNOD (S) MKNOD (S)

Name

mknod - Makes a directory, or a special or ordinary file.

Syntax

int mknod (path, mode, dev)
char *path;
int mode, dev;

Description

mknod creates a new file named by the pathname pointed to by path.
The mode of the new file is initialized from mode. Where the value of
mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

0004000 Set user ID on execution

0002000 Set group ID on execution

0001000 Save text image after execution

0000777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file's owner ID is set to the process' effective user ID. The file's
group ID is set to the process' effective group ID.

The low-order 9 bits of mode are modified by the process' file mode
creation mask: all bits set in th~ process' file mode creation mask are
cleared. See umask(S). If mode indicates a block, character, or name
special file, then dev is a configuration-dependent specification of a
character or block I/O device. If mode does not indicate a block, char­
acter, or name special file, then dev is ignored. For block and charac­
ter special files, dev is the special file's device number. For name

October 10, 1988 Page 1

MKNOD (S) MKNOD (S)

special files, dev is the type of the name file, either a shared memory
file or a semaphore.

mknod may be invoked only by the super-user for file types other than
named pipe-special files.

mknod will fail and the new file will not be created if one or more of
the following are true:

The process' effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The directory in which the file is to be created is located on a
read-only file system. [EROFS]

The named file exists. [EEXIST]

path points outside the process' allocated address space.
[EFAULT]

The directory to contain the new file cannot be extended.
[ENOSPC]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

chmod(S), creatsem(S), exec(S), filesystem(F), mkdir(C), mknod(C),
sdget(S), umask(S),

Notes

Semaphore files should be created with the creatsem (S) system call.

Share data files should be created with the sdget(S) system call.

Page 2 October 10, 1988

MKTEMP(S)

Name

mktemp - Makes a unique filename.

Syntax

char *mktemp(template)
char *template;

Description

MKTEMP(S)

mktemp replaces template with a unique filename and returns the
address of template. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID
preceded by a letter. The letter will be chosen so that the resulting
name does not duplicate an existing file.

See Also

getpid(S), tmpfile(S), tmpnam(S)

Notes

It is possible to run out of letters.

October 10, 1988 Page 1

MONITOR (S)

Name

monitor - Prepares execution profile.

Syntax

void monitor (lowpc, high pc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
short *buffer;
int bufsize, nfunc;

Description

MONITOR (S)

monitor is an interface to projil (S). lowpc and highpc are the
addresses of two functions; buffer is the address of a user-supplied
array of bujsize short integers. monitor arranges to record a histogram
of periodically sampled values of the program counter, and of counts
of the calls to certain functions, in the buffer. The lowest address
sampled is that of lowpc and the highest is just below highpc. At most
njunc call counts can be kept; only calls of functions compiled with
the profiling option -p of cc (CP) are recorded. For the results to be
significant, especially where there are small, heavily used routines, it
is suggested that the buffer be no more than a few times smaller than
the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etextO;

monitor((int (*)0)2, etext, buf, bufsize, nfunc);

etext lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor«int (*)0)0);

proj(CP) can then be used to examine the results.

Files

mon.out

See Also

cc(CP), prof(CP), profil(S)

October 10, 1988 Page 1

MONITOR (S) MONITOR (S)

Notes

An executable program created by cc -p automatically includes calls
for monitor with default parameters; monitor needn't be called expli­
citly except to gain fine control over profiling.

Warning

Profiling gives incorrect results for hybrid model 286 programs (Le.
those with 16 bit text pointers within modules and 32 bit text pointers
between modules).

Page 2 October 10, 1988

MOUNT(S) MOUNT(S)

Name

mount - Mounts a file system.

Syntax

int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

Description

mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir. spec and dir are pointers to pathnames.

Upon successful completion, references to the file dir will refer to the
root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is
permitted according to individual file accessibility.

mount may be invoked only by the super-user.

mount will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIR]

spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

dir is not a directory. [ENOTDIR]

spec or dir points outside the process' allocated address space.
[EFAULT]

dir is currently mounted on, is someone's current working direc­
tory, or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

There are no more mount table entries. [EBUSY]

October 10, 1988 Page 1

MOUNT(S) MOUNT(S)

Return Value

Upon successful completion a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

mount(C), umount(S)

Page 2 October 10, 1988

MSGCTL (S)

Name

msgctl - Provides message control operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid _ ds *buf;

Description

MSGCTL (S)

msgetl provides for message control operations specified by emd.

The emds available are:

fPC STAT
- Places the current value of each member of the data struc­

ture associated with msqid into the structure pointed to by
buf. Contents of this structure are defined in intro(S).

fPC _SET Sets the value of the following members of the data struc­
ture associated with msqid into the structure pointed to by
buf:

msg_penn.uid
msg_penn.gid
msg_penn.mod j* only low 9 bits*1
msg_qbytes

This emd can only be executed by a process that has an
effective user ID equal to either a super-user or to the value
of msgyerm.uid in the data structure associated with
msqid. Only a super-user can raise the value of msg_qbytes.

fPC RMfD
- Removes the message queue identifier specified by msqid

from the system and destroys the message queue and data
structure associated with it. This emd can only be executed
by a process that has an effective user ID equal to either a
super-user or to the value of msgyerm.uid in the data struc­
ture associated with msqid.

msgctl will fail if one or more of the following are true:

msqid is not a valid message queue identifier. [EINVAL]

October 10, 1988 Page 1

MSGCTL(S) MSGCTL (S)

cmd is not a valid command. [EINVAL]

cmd is equal to fPC_STAT and buf p'oints to an address in read­
only shared data. [EINVAL]

cmd is equal to fPC_STAT and read operation permission is
denied to the calling process (see intro(S». [EACCES]

cmd is equal to fPC_RMfD or fPC_SET. The effective user ID
of the calling process does not equal that of a super-user nor
does it equal the value of msgyerm.uid in the data structure
associated with msqid. [EPERM]

Cmd is equal to fPC_SET, an attempt is being made to increase
to the value of msg qbytes, and the effective user ID of the cal­
ling process is not equal to that of super user.

bufpoints to an illegal address. [EFAULT]

Return Value

A value of 0 is returned upon successful completion. Otherwise, -1 is
returned and errno is set to indicate the error.

See Also

intro(S), msgget(S), msgop(S)

Notes

8086/80286 programs using this function must be compiled with the
-Me compiler option.

Page 2 October 10, 1988

MSGGET(S)

Name

msgget - Gets message quelle.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key t key;
int msgflg;

Description

MSGGET(S)

msgget returns the message queue identifier associated with key.

A message queue identifier, an associated message queue, and data
structure (see intro (S)) are created for key if one of the following is
true:

key is equal to IPe_PRIVATE.

ke}' does not already have a message queue identifier associated
with it, and (msgflg & IPC_CREAT) is "true".

Values for the data structure associated with the new message queue
identifier are initialized as follows:

msg_perm.cuid and msg_perm.uid are set equal to the effective
user ID of the calling process. msg_perm.cgid and
msg_perm.gid are set equal to the effective group ID of the calling
process.

The low-order 9 bits of msg perm.mode are set equal to the low-
order 9 bits of msgfig . -

msg qnum,msg lspid,msg Irpid, and msg rtime are set equal to o. - - - -

msg_ ctime is set equal to the current time.

msg_qbytes is set equal to the system limit.

msgget fails if one or more of the following is true:

A message queue identifier exists for key; however, operation per­
mission as specified by the low-order 9 bits of msgfig would not be
granted (see intro(S)). [EACCES]

October 10, 1988 Page 1

MSGGET(S) MSGGET(S)

A message queue identifier does not exist for ke.'.' and (msgflg &
IPC_CREAT) is "false". [ENOENT]

A message queue identifier would be created but the system­
imposed limit on the maximum number of allowed message queue
identifiers for the system would be exceeded. [ENOSPC]

A message queue identifier exists for the key but ((msgflg &
IPC_CREAT) & (msgflg && IPC_EXCL)) is "true". [EEXIST]

Return Value

Upon successful completion, the message queue identifier is returned.
This is a non-negative integer. Otherwise. a value of -1 is returned
and ermo is set t; indicate the error. .

See Also

intro(S), msgctl(S), msgop(S). stdipc(S).

Notes

8086/80286 programs using this function must be compiled with the
-Me compiler option.

Page 2 October 10, 1988

MSGOP (S)

Name

msgop - Message operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid. msgp. msgsz, msgflg)
int msqid~
struct msgbuf *msgp:
int msgsz, msgflg:

int msgrcy (msqid. msgp, msgsz. msgt~·p. msgflg)
int msqid;
struct msgbuf *msgp:
long msgsz~
long msgtyp:
int msgflg:

Description

MSGOP (S)

msgsnd is used to send a message to the queue associated with the
message queue identifier specified by I1Isqid.

msgp points to the structure containing the message. The structure
contains the following members:

lono­
cha~

mtype:
mtext[]:

/* messao-e type */
t, message text /;

l1Itype is a positive integer that can be used by the receiving process
for message selection (see I7IsgrC1' below). mtext is text of length
l1Isgs~ bytes. msgs~ can rangc from 0 to a maximum imposed by the
system.

msg/7g specifies the action to be taken if one or more of the following
conditions is true:

The number of bytes already on the queue is equal to msg_ qbytes
(see imro(S)).

The number of messages on all the queues systcm-wide equals the
system-imposed limit.

October 10, 1988 Page 1

MSGOP (S) MSGOP (S)

The actions msgffg specifies include:

The message will not be sent and the calling process will return
immediately if (msgfig & IPC_NOWAIT) is true.

If (Illsgflg & IPC_NOW AIT) is false, the calling process will
suspend execution until one of following the occurs:

The condition causing the suspension no longer exists. In
this case. the message is sent.

I71sqid is removed from the system (see I71sgctl (S». In this
case. ermo is set equal to EIDRM, and a value of -1 is
retumed.

The calling process receives a signal that is to be caught. In
this case the message is not sent and the calling process
resumes execution in the manner described in signal(S).

l7/sgsl/d will fail and no message will be sent if one or more of the fol-
100ving are true:

I7lsqid is not a valid message queue identifier. [EINVAL]

Operation pem1ission is denied to the calling process (see
illfro(S)). [EACCES]

mt.'lH! is less than 1. [EINVAL]

The message cannot be sent for one of the preceding reasons and
(lJIsgjlg & IPC_NOW AlT) is true. [EAGAIN]

IIlsgsz is less than zero or greater than the system-imposed limit.
[EINVAL]

Illsgp points to an illegal address. [EFAULT]

Upon successful completion. the following actions are taken with
respect to the data structure associated with msqid (see Illfro(S».

msg_ qnum is incremented by 1.

msg_lspid is set equal to the process ID of the cailing process.

msg_stime is set equal to the current time.

Page 2 October 10, 1988

MSGOP (S) MSGOP (S)

msgrcv reads a message from the queue associated with the message
queue identifier (msqid) and places it in the structure pointed to by
msgp. The structure contains the following members: .

long
char

mtype;
mtext[];

j* message type *j
j* message text *j

mtype is the received message's type. This is specified by the sending
process. mtext is the text of the message. msgsz gives the size in bytes
of mtext. If the received message is larger than msgsz bytes and
(msgfig & MSG_NOERROR) is true, the message is truncated to msgsz
bytes. The truncated part of the message is lost and no notice of the
truncation is given to the calling process.

msgtyp specifies the type of message requested:

If msgtype equals zero, the first message on the queue is received.

If msgtyp is greater than zero, the first message of type msgtyp is
received.

If msgtyp is less than zero, the first message of the lowest type less
than or equal to the absolute value of msgtyp is received.

msgfig specifies an action if a message of the desired type is not on the
queue. These include:

If (msgfig & fPC NOWAfT) is true, calling process returns
immediately with a-return value of -1 and errno is set equal to
ENOMSG.

If (msgfig & fPC NOWAfT) is false, calling process suspends exe­
cution until one Of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. errno is set equal to
EIDRM and a value of -1 is returned.

The calling process receives a signal that is to be caught. In
this case, a message is not received and the calling process
resumes execution in the manner described in signal (S).

msgrcv will fail and no message will be received if one or more of the
following are true:

msqid is not a valid message queue identifier. [EINVAL]

bufpoints to an address in read-only shared data. [EINVAL]

October 10, 1988 Page 3

MSGOP(S) MSGOP (S)

Operation permission is denied to the calling process. [EACCES]

msgsz is less than O. [EINVAL]

mtext is greater than msgsz and (msgfig & MSG_NOERROR) is
false. [E2BIG]

The queue does not contain a message of the desired type and
(msgtyp & IPC_NOWAIT) is true. [ENOMSG]

msgp points to an illegal address. [EFAULT]

Upon successful completion, the following actions are taken on the
data structure associated with msqid (see Intro(S)).

msg_ qnum is decreased by 1.

msg_Irpid is set equal to the process ID of the calling process.

msg_rtime is set equal to the current time.

Return Values

If msgsnd or msgrcv return because of a signal received, a value of -1
is returned to the calling process and errno is set to EINTR. If these
operations return because msqid was removed from the system, a
value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return values are:

msgsnd returns O.

msgrcv returns a value equal to the number of bytes placed into
mtext.

Otherwise, -1 is returned and errno is set to indicate the error.

See Also

intro(S), msgctl(S), msgget(S), signal(S).

Notes

8086/80286 programs using this function must be compiled with the -
Me compiler option.

Page 4 October 10,1988

NAP (S)

Name

nap - Suspends execution for a short interval.

Syntax

long nap (period)
long period;

Description

NAP (S)

The current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Return Value

On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process received a signal
while napping, the return value will be -1, and errno will be set to
EINTR.

See Also

sleep(S)

Notes

This function is driven by the system clock, which in most cases has a
granularity of tens of milliseconds. This function must be linked with
the linker option -Ix.

October 10, 1988 Page 1

NICE (S)

Name

nice - Changes priority of a process.

Syntax

int nice (incr)
int incr;

Description

NICE (S)

nice adds the value of incr to the nice value of the calling process. A
process' nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these lim­
its result in the nice value being set to the corresponding limit.

nice will not change the nice value if incr is negative or greater than
40, and if the effective user ID of the calling process is not super-user.
[EPERM]

Return Value

Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled. It
differs from most other system calls in two ways: the value -1 is a
valid return code (in the case where the new nice value is 19), and the
system call either works or ignores the request; there is never an error.

See Also

exec(S), nice(C)

October 10, 1988 Page 1

NLIST(S)

Name

nlist - Gets entries from name list.

Syntax

#include <a.out.h>

int nlist (filename, nl)
char *filename;
struct nUst *nl

Description

NLIST(S)

nUst examines the name list in the given executable output file and
selectively extracts a list of values. The given executable files can be
either XENIX object files or COFF files. The name list consists of an
array of structures containing names, types and values. The list is ter­
minated with a null name. Each name is looked up in the name list of
the file. If the name is found, the type and value of the name are
inserted in the next two fields. If the name is not found, both entries
are set to O. See a.out(F) for a discussion of the symbol table struc­
ture.

See Also

a.out(F), xlist(S)

Diagnostics

nUst return -1 and sets all type entries to 0 if the file cannot be read, is
not an object file, or contains an invalid name list. Otherwise, nUst
returns O. A return value of 0 does not indicate that any or all symbols
were found.

October 10, 1988 Page 1

OPEN(S) OPEN(S)

Name

open - Opens file for reading or writing.

Syntax

#include <fcntl.h>
int open (path, oflag[, mode])
char *path;
int oflag, mode;

Description

path points to a pathname naming a file. open opens a file descriptor
for the named file and sets the file status flags according to the value
of oflag. oflag values are constructed by using flags from the follow­
ing list (only one of the first three flags below may be used):

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY
This flag may affect subsequent reads and writes. See
read(S) and write (S).

When opening a FIFO with O_RDONLY or 0_ WRONLY
set:

IfO_NDELAYis set:

An open for reading-only will return without delay.
An open for writing -only will return an error if no pro­
cess currently has the file open for reading.

IfO_NDELAY is clear:

October 10, 1988

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

Page 1

OPEN(S)

O_APPEND

OPEN (S)

When opening a file associated with a communication
line:

IfO_NDELAY is set:

The open will return without waiting for carrier.

IfO_NDELAY is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior
to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the
file's owner ID is set to the process' effective user ID, the
file's group ID is set to the process' effective group ID, and
the low-order 12 bits of the file mode are set to the value
of mode modified as follows (see createS»~:

All bits set in the process' file mode creation mask <\fe
cleared. See umask(S).

The "save text image after execution bit" of the mode
is cleared. See chmod(S).

O_TRVNC If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file
exists.

O_SYNCW Every write to this file descriptor will be synchronous, that
is, when the write system call completes, data is
guaranteed to have been written to disk.

Upon successful completion, a nonnegative integer, the file descriptor,
is returned.

The file pointer used to mark the current position within the file is set
to the beginning of the file.

The new file descriptor is set to remain open across exec system calls.
See fcntl (S).

No process may have more than 60 file descriptors open simultane­
ously.

Page 2 October 10, 1988

OPEN (S) OPEN(S)

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

oflag permission is denied for the named file. [EACCES]

The named file is a directory and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only file system and oflag is write
or read/write. [EROFS]

Sixty file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the
device associated with this special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being executed
and oflag is write or read/write. [ETXTBSY]

path points outside the process' allocated address space.
[EFAULT]

O_CREAT and O_EXCL are set, and the named file exists.
[EEXIST]

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and
no process has the file open for reading. [ENXIO]

A signal was caught during the open system call. [EINTR]

The system file table is full. [ENFILE]

The directory to contain the file cannot be extended, the file does
not exist, and O_CREAT is specified. [ENOSPC]

Return Value

Upon successful completion, a nonnegative integer, namely a file
descriptor, is returned. Otherwise, a value of -1 is returned and errno

October 10, 1988 Page 3

OPEN(S) OPEN(S)

is set to indicate the error.

See Also

chmod(S), close(S), creat(S), dupeS), fcntl(S), Iseek(S), read(S),
umask(S), write(S)

Notes

The O_SYNCHW flag is a XENIX specific enhancement which may not
be present in all UNIX implementations.

Page 4 October 10, 1988

OPENSEM(S)

Name

opensem - Opens a semaphore.

Syntax

int opensem(sem_name)
char *sem _name;

sem_num = opensem(sem_name);

Description

OPENSEM(S)

opensem opens a semaphore named by sem _name and returns the
unique semaphore identification number sem _ num used by waitsem
and sigsem. creatsem should always be called to initialize the sema­
phore before the first attempt to open it.

System Compatibility

opensem can only be used to open semaphores created under XENIX
version 3.0, not for XENIX System V semaphores.

See Also

creatsem(S), sigsem(S), waitsem(S)

Diagnostics

opensem returns a value of -1 if an error occurs. If the semaphore
named does not exist, errno is set to ENOENT. If the file specified is
not a semaphore file (Le., a file previously created by a process using
a call to creatsem), errno is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, errno is set to ENAVAIL.

Notes

This feature is a XENIX specific enhancement which may not be
present in all UNIX implementations. This function must be linked
with the linker option -Ix.

October 10, 1988 Page 1

OPENSEM(S) OPENSEM(S)

Warning

It is not advisable to open the same semaphore more than once.
Although it is possible to do this, it may result in a serious deadlock.

Page 2 October 10, 1988

PAUSE (S) PAUSE (S)

Name

pause - Suspends a process until a signal occurs.

Syntax

int pause 0;

Description

pause suspends the calling process until it receives a signal. The sig­
nal must be one that is not currently set to be ignored by the calling
process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned
from the signal catching function (see signal(S)), the calling process
resumes execution from the point of suspension; with a return value of
-1 from pause and erma set to EINTR.

See Also

alarm(S), kill(S), signal(S), waiteS)

October 10, 1988 Page 1

PERROR (S) PERROR (S)

Name

perror, sys_errlist, sys_nerr, errno - Sends system error messages.

Syntax

void perror(s)
char *s;

extern int errno;

extern char *sys _ errlist[];

extern int sys _ nerr;

Description

perror produces a short error message on the standard error, describ­
ing the last error encountered during a system call from a C program.
First the argument string s is printed, then a colon, then the message
and a newline. To be of most use, the argument string should be the
name of the program that incurred the error. The error number is
taken from the external variable errno, which is set when errors occur
but not cleared when correct calls are made.

To simplify variant formatting of messages, the vector of message
strings sys errlist is provided; errno can be used as an index in this
table to get the message string without the newline. sys nerr is the
largest message number provided for in the table; it should-be checked
because new error codes may be added to the system before they are
added to the table.

See Also

intro(S)

October 10, 1988 Page 1

PIPE (S)

Name

pipe - Creates an interprocess pipe.

Syntax

int pipe (fildes)
int flldes[2];

Description

PIPE (S)

pipe creates an I/O mechanism called a pipe and returns two file
descriptors in the array fildes. fildes [0] is opened for reading and
fildes [1] is opened for writing and the O_NDELAY flag is clear. The
descriptors remain open acrossfork(S) system calls, making commun­
ication between parent and child possible.

Writes up to 10240 bytes of data (10 times BSIZE) are buffered by the
pipe before the writing process is blocked. A read on file descriptor
fildes [0] accesses the data written to fildes [1] on a first-in-first-out
basis.

No process may have more than 60 file descriptors open simultane­
ously.

pipe will fail if 59 or more file descriptors are currently open.
[EMFILE] It will also fail if the system file table is full. [ENFILE]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

sh(C), read(S), write(S), fork(S), popen(S)

October 10, 1988 Page 1

PLOCK(S)

Name

plock - Lock process, text, or data in memory.

Syntax

#include <sys/lock.h>
int plock (op)
int op;

Description

PLOCK(S)

plock allows the calling process to lock its text segment (text lock), its
data segment (data lock), or both its text and data segments (process
lock) into memory. Locked segments are immune to all routine swap­
ping. plock also allows these segments to be unlocked. The effective
user ID of the calling process must be root user to use this call. op
specifies the following:

PROCLOCK
Lock text and data segments into memory.

TXTLOCK
Lock text segment into memory.

DATLOCK
Lock data segment into memory.

UNLOCK
Remove all process locks.

plock will fail and not perform the requested operation if one or more
of the following are true: .

The effective user ID of the calling process is not root. [EPERMl

op is equal to PROLOCK and a process lock, a text lock, or a data lock
already exists on the calling process. [EINV ALl

op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process. [EINV ALl

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process. [EINV ALl

op is equal to UNLOCK and no type of lock exists on the calling pro­
cess. [EINV ALl

October 10, 1988 Page 1

PLOCK(S) PLOCK(S)

Return Value

Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and errna is set to indi­
cate the error.

See Also

exec(S), exit(S), fork(S)

Page 2 October 10, 1988

POPEN(S)

Name

popen, pclose - Initiates I/O to or from a process.

Syntax

#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

Description

POPEN(S)

The arguments to popen are pointers to null-terminated strings con­
taining, respectively, a shell command line and an I/O mode, either
"r" for reading or "w" for writing. popen creates a pipe between the
calling process and the command to be executed. The value returned
is a stream pointer that can be used (as appropriate) to write to the
standard input of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits
for the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes, a
type "r" command may be used as an input filter, and a type "w" as
an output filter.

See Also

pipe(S), waiteS), fclose(S), fopen(S), system(S)

Diagnostics

popen returns a null pointer if files or processes cannot be created, or
if the shell cannot be accessed.

pclose returns -1 if stream is not associated with a popen ed com­
mand.

Notes

Only one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave the standard input of
that filter mispositioned. Similar problems with an output filter may
be forestalled by careful buffer flushing; see Iclose (S).

October 10, 1988 Page 1

PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

Syntax

#include <stdio.h>

int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, *format;

Description

PRINTF (S)

printf places output on the standard output stream stdont. [printf
places output on the named output stream. sprintf places output, fol­
lowed by the null character (\0) in consecutive bytes starting at *s; it
is the user's responsibility to ensure that enough storage is available.
Each function returns the number of characters placed (not including
the \0 in the case of sprint/), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results in
fetching of zero or more args. The results are undefined if there are
insufficient args for the format. If the format is exhausted while args
remain, the excess arg s are simply ignored.

Each conversion specification is introduced by the character %. After
the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag
described below has been given) to the field width. If the field
width is preceded with a "0" (e.g., %04), the converted value will
be padded with zeroes. If the width is preceded with a blank (e.g.,
% 4), the value will be preceded with blanks. Padding with zeroes
may be applied to numeric conversions only. Strings and

October 10, 1988 Page 1

PRINTF(S) PRINTF(S)

characters cannot be zero padded.

A precision that gives the minimum number of digits to appear for
the d, 0, 0, x, or X conversions, the number of digits to appear after
the decimal point for the e and f conversions, the maximum
number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by a decimal
digit string: a null digit string is treated as zero.

An optional I specifying that a following d, 0, 0, x, or X conversion
character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width or
precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or preci­
sion must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justi fied within
the field.

The result of a signed conversion will always begin with a
sign (+ or -).

If the first character of a signed conversion is not a sign, a
blank will be prepended to the result. This implies that if
the blank and + flags both appear, the blank flag will be
ignored.

This flag specifies that the value is to be converted to an
"alternate form." For c, d, s, and 0 conversions, the flag
has no effect. For ° conversion, it increases the precision
to force the first digit of the result to be a zero. For x (X)
conversion, a nonzero result will have Ox (OX) prepended
to it. For e, E, f, g, and G conversions, the result will
always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result
of these conversions only if a digit follows it). For g and
G conversions, trailing zeroes will not be removed from
the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal (d),
unsigned octal (0), unsigned decimal (D), or hexadecimal
notation (x and X), respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X

Page 2 October 10, 1988

PRINTF (S) PRINTF (S)

conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with lead­
ing zeroes. The default precision is 1. The result of con­
verting a zero value with a precision of zero is a null
string (unless the conversion is 0, x, or X and the # flag is
present).

f The float or double arg is converted to decimal notation
in the style "[-]ddd.ddd", where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
"[-]d.ddde±dd", where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits. However, if the value
to be printed is greater than or equal to 1E+ 100, addi­
tional exponent digits will be pointed as necessary.

g,G The float or double arg is printed in style for e (or in style
E in the case of a G format code), with the precision
specifying the number of significant digits. The style
used depends on the value converted: style e will be used
only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if it
is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac­
ter (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. If the pre­
cision is missing, it is taken to be infinite, so all characters
up to the first null character are printed.

% Print a %; no argument is converted.

In no case does a nonexistent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the
field is simply expanded to contain the conversion result. Characters
generated by printf and jprintf are printed as if putchar had been
called (see putc(S)).

October 1 0, 1988 Page 3

PRINTF (S) PRINTF (S)

Examples

To print a date and time in the fonn "Sunday, July 3, 10:02", where
weekday and month are pointers to null-tenninated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour,
min);

To print 1t to five decimal places:

printf("pi = %.5f", 4*atan(1.0));

See Also

ecvt(S), putc(S), scanf(S) vprintf(S)

Page 4 October 10, 1988

PROCTL (S)

Name

proctl - Controls active processes or process groups.

Syntax

#include <sys/proctl.h>

int proctl(pid, command, arg)
int pid, command;
char *arg;

Description

PROCTL (S)

proctl performs a variety of functions on active processes or process
groups. It has the same form as the ioctl (S) system call, except that a
process ID (Pid) is substituted for a file descriptor as the first parame­
ter.

command is an integer mnemonic, specifying the action to be taken,
and arg is a pointer to a data structure which defines the parameters
associated with the command if necessary.

If pid is greater than zero (0), the command affects the process whose
process ID is equal to pid. pid may be 1.

If pid is zero, the command is sent to all processes, except processes 0
and 1 whose process group ID is equal to the process group ID of the
sender.

If pid is -1 and the effective user ID of the sender is not the super-user,
the command is sent to all processes, except processes 0 and 1 whose
real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, the
command is sent to all processes except processes 0 and 1.

If pid is negative but not -1, a signal is sent to all processes whose pro­
cess group ID is equal to the absolute value of pid .

proctl will fail if one or more of the following are true:

command or arg is not valid. [EINVAL]

No process can be found to match the specified pid. [ESRCH]

The user ID of the sending process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process. [EPERM]

October 10, 1988 Page 1

PROCTL (S) PROCTL (S)

The program has requested more memory than is available.
[ENOMEM]

arg is not a valid address. [EFAULT]

Memory Restrictions

exec(S) may fail when the required physical memory is larger than the
available swap space. This restriction may be lifted using one of the
following proctl commands:

PRHUGEX

Allows programs to be executed by this process even if they
exceed the available swap space. Such programs must still fit in
the available physical memory and the caller's effective user ID
must be super-user. Such HUGE processes are locked in memory
to prevent them from being swapped. Processes that are marked
HUGE with this system call but are not greater than the size of the
swapper behave normally but can expand into a HUGE, locked
process.

PRNORMEX

Makes a process unable to exec(S) HUGE programs. This call may
be executed by any user. If an attempt is made to classify a process
as normal using the PRNORMEX call when the process is already
too big to swap, the proctl call will fail, returning EINV AL.

For example, you can use the following code to allow a process to be
executed even if it exceeds the available memory swapping space:

if (argc < 2) {
fputs ("usage: runbig command arg ... \n", stderr);
exit(2);

}
argv[argc] = 0;

if (proct1(getpidO, PRHUGEX, (char *) 0) < 0) {
perror (' 'runbig' ');
exit(l);

Return Value

If an error has occurred, a value of -1 is returned and errno is set to
indicate the error.

Page 2 October 10, 1988

PROCTL (S)

See Also

exec(S), ioctl(S), kill(S)

Notes

This function must be linked with the linker option -Ix.

October 10, 1988

PROCTL (S)

Page 3

PROFIL(S)

Name

profil - Creates an execution time profile.

Syntax

void profil (buff, bufsiz, offset, scale)
char *buff;
unsigned int bufsiz, scale;
int (*offset)O;

Description

PROFIL (S)

buff points to an area of core whose length (in bytes) is given by buf­
siz. After this call, the user's program counter is examined each clock
tick, where a clock tick is some fraction of a second given in
machine (HW). offset is subtracted from it, and the result multiplied
by scale. If the resulting number corresPQnds to a word inside buff,
that word is incremented. An "entry" is defined as a series of bytes
with length sizeof(short).

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc's to
words in buff; 077777 (octal) maps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered inef­
fective by giving a bufsiz of o. Profiling is turned off when an exec is
executed, but remains on in child and parent both after afork. Profil­
ing will be turned off if an update in buff would cause a memory fault.

See Also

prof(CP), monitor(S)

October 10, 1988 Page 1

PTRACE (S) PTRACE (S)

Name

ptrace _ptrace- Traces a process.

Syntax

int ptrace (request, pid, addr, data);
int request, pid, data, addr;

Description

ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is in the implementation
of breakpoint debugging; see adb (CP). The child process behaves
nonnally until it encounters a signal (see signal (S) for the list), at
which time it enters a stopped state and its parent is notified via
wait (S). When the child is in the stopped state, its parent can examine
and modify its "memory image" using ptrace. Also, the parent can
cause the child either to tenninate or continue, with the possibility of
ignoring the signal that caused it to stop.

The request argument detennines the precise action to be taken by
ptrace and is one of the following:

o This request must be issued by the child process if it is to
be traced by its parent. It turns on the child's trace flag
that stipulates that the child should be left in a stopped
state upon receipt of a signal rather than the· state
specified by June; see signal(S). The pid, addr, and data
arguments are ignored, and a return value is not defined
for this request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the parent process.
For each, pid is the process ID of the child. The child must be in a
stopped state before these requests are made.

1, 2 The word at location addr in the address space of the
child is returned to the parent process. If I and D space
are separated, request 1 returns a word from I space, and
request 2 returns a word from D space. If I and D space
are not separated, either request 1 or request 2 may be
used with equal results. The data argument is ignored.
These two requests will fail if addr is not the start
address of a word, in which case a value of -1 is returned
to the parent process and the parent's errno is set to EIO.

October 10, 1988 Page 1

PTRACE (S) PTRACE (S)

Page 2

3 With this request, the word at location addr in the child's
USER area in the system's address space (see
<sys/user .h» is returned to the parent process. The data
argument is ignored. This request will fail if addr is not
the start address of a word or is outside the USER area, in
which case a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argu­
ment is written into the address space of the child at loca­
tion addr. If I and D space are separated, request 4
writes a word into I space, and request 5 writes a word
into D space. If I and D space are not separated, either
request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the
address space of the child is returned to the parent.
These two requests will fail if addr is a location in a pure
procedure space and another process is executing in that
space, or addr is not the start address of a word. Upon
failure a value of -1 is returned to the parent process and
the parent's errno is set to EIO.

6 With this request, a few entries in the child's USER area
can be written. data gives the value that is to be written
and addr is the location of the entry. The few entries that
can be written are as follows:

7

8

-The general registers

-Any floating-point status registers

-Certain bits of the processor status

This request causes the child to resume execution. If the
data argument is 0, all pending signals including the one
that caused the child to stop are canceled before it
resumes execution. If the data argument is a valid signal
number, the child resumes execution as if it had incurred
that signal and any other pending signals are canceled.
In a linear address space memory model, the value of
addr must be (int *) 1, or in a segmented address space
the segment part of addr must be zero and the offset part
of addr must be (int *) 1. Upon successful completion,
the value of data is returned to the parent. This request
will fail if data is not ° or a valid signal number, in
which case a value of -1 is returned to the parent process
and the parent's errno is set to EIO.

This request causes the child to terminate with the same
consequences as exit(S).

October 10, 1988

PTRACE (S) PTRACE (S)

9 Execution continues as in request 7; however, as soon as
possible after execution of at least one instruction, execu­
tion stops again. The signal number from the stop is
SIGTRAP. This is part of the mechanism for implement­
ing breakpoints. The exact implementation and behavior
is somewhat CPU dependent.

As indicated, these calls (except for request 0) can be used only
when the subject process has stopped. The wait system call is
used to determine when a process stops; in such a case the ter­
mination status returned by wait has the value 0177 to indicate
stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent exec (S) calls. If a traced process calls
exec, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

Errors

ptrace will in general fail if one or more of the following are true:

request is an illegal number. [EID]

pid identifies a child that does not exist or has not executed a
ptrace with request O. [ESRCH]

Notes

The implementation and precise behavior of this system call is
inherently tied to the specific CPU and process memory model in use
on a particular machine. Code using this call is likely to not be port­
able across all implementations without some change.

See Also

adb(CP), exec(S), signal(S), waiteS), machine(HW)

October 10, 1988 Page 3

PUTC (S) PUTC (S)

Name

putc, putchar, fputc, putw - Puts a character or word on a stream.

Syntax

#include <stdio.h>

int putc (c, stream)
int c;
FILE *stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

Description

pute appends the character e to the named output stream (at the posi­
tion where the file pointer, if defined, is pointing). It returns the char­
acter written.

putehar(e) is defined as pute (e, stdout).

/pute behaves like pute, but is a genuine function rather than a macro;
it may therefore be used as an argument. /pute runs more slowly than
pute , but takes less space per invocation.

putw appends the word (i.e., integer) w to the output stream. putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the out­
put does not refer to a terminal; this default may be changed by
setbu[(S). The standard stream stderr is by default unbuffered uncon­
ditionally, but use of [reopen (see [open(S» causes it to become buf­
fered or line-buffered; setbu[(S), again, sets the state to whatever is
desired. When an output stream is unbuffered, information appears on
the destination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. See fflush in
[close (S).

October 10, 1988 Page 1

PUTe (S) PUTe (S)

See Also

fc1ose(S), ferror(S), fopen(S), fread(S), getc(S), printf(S), puts(S)

Diagnostics

When a character or word is successfully put on a stream, these func­
tions each return the value they have written. These functions return
the constant EOF upon error. This will occur if the file stream is not
open for writing or if the output file cannot be grown. Because EOF is
a valid integer,jerror(S) should be used to detect putw errors.

Notes

The stream argument with side effects is not treated correctly,
because putc is implemented as a macro. In particular,

putc (c, *f++);

does not work sensibly. fputc should be used instead.

Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent and may not be read using
getw on a different processor.

Page 2 October 10, 1988

PUTENV(S)

Name

putenv - Changes or adds value to environment.

Syntax

int putenv (string)
char *string;

Description

PUTENV(S)

*string points to a string of the fonn "name=value". putenv makes
the value of the environment variable name equal to value by altering
an existing variable or creating a new one. In either case, the string
pointed to by * string becomes part of the environment, so altering the
·string will change the environment. The memory pointed to by
* string is removed from the environment once a new string that
defines the environment variable name is passed to putenv .

See Also

environ(M), exec(S), getenv(S), malloc(S)

Diagnostics

putenv returns non-zero if it was unable to obtain enough space via
maUoe for an expanded environment, otherwise zero.

Warnings

putenv manipulates the environment pointed to by environ, and can be
used in conjunction with getenv. However, envp (the third argument
to main) is not changed.

This routine uses maUoe (S) to enlarge the environment.

After putenv is called, environmental variables are not in alphabetical
order.

A potential error is to call putenv with an automatic variable as the
argument, then exit the calling function while string is still part of the
environment. string must be static, not automatic.

October 10, 1988 Page 1

PUTPWENT (S)

Name

putpwent - Writes a password file entry.

Syntax

#include <stdio.h>
#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;

Description

PUTPWENT(S)

putpwent is the inverse of getpwent(S). Given a pointer to a passwd
structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream f. The line matches the format of
/etc/passwd.

See Also

passwd(F), getpwent(S)

Diagnostics

putpwent returns nonzero if an error was detected during its operation,
otherwise zero.

October 10, 1988 Page 1

PUTS (S)

Name

puts, fputs - Puts a string on a stream.

Syntax

#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

Description

PUTS (S)

puts copies the null-tenninated string s to the standard output stream
stdout and appends a newline character.

fputs copies the null-tenninated string s to the named output stream.

Neither routine copies the tenninating null character.

Diagnostics

Both routines return EOP on error.

See Also

ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

Notes

puts appends a newline, fputs does not.

October 10, 1988 Page 1

QSORT(S)

Name

qsort - Perfonns a quicker sort.

Syntax

void qsort (base, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar)();

Description

QSORT (S)

qsort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number
of elements; the third is the width of an element in bytes; the last is
the name of the comparison routine. It is called with two arguments
which are pointers to the elements being compared. The routine must
return an integer less than, equal to, or greater than ° according to how
much the first argument is to be considered less than, equal to, or
greater than the second.

Notes

The pointer to the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values being
compared.

The order in the output of two items which compare as equal is
unpredictable.

See Also

bsearch(S), Isearch(S), 'sort(C), string(S)

October 10, 1988 Page 1

RAND (S)

Name

rand, srand - Generates a random number.

Syntax

void srand (seed)
unsigned seed;

int rand ()

Description

RAND (S)

rand uses a multiplicative congruential random number generator
with period 232 to return successive pseudo-random numbers in the
range from ° to 215

_1.

The generator is reinitialized by calling srand with 1 as argument. It
can be set to a random starting. point by calling srand with an
unsigned integer in argument seed.

See Also

drand48(S)

Note

The spectral properties of rand are limited. drand48(S) provides a
much better, more elaborate, random-number generator.

October 10, 1988 Page 1

RDCHK(S)

Name

rdchk - Checks to see if there is data to be read.

Syntax

int rdchk(fdes);
int fdes;

Description

RDCHK(S)

rdchk checks to see if a process will block if it attempts to read the
file designated by fdes. rdchk returns 1 if the process will not block
when a read is attempted or if it is the end of the file (EOF). In this
context, the proper sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes);

See Also

read(S)

Diagnostics

rdchk returns -1 if an error occurs (e.g., EBADF), ° if the process will
block if it issues a read and 1 if it is okay to read. EBADF is returned
if a rdchk is done on a semaphore file or if the file specified doesn't
exist.

Notes

This function must be linked with the linker option -Ix.

October 10, 1988 Page 1

READ (S)

Name

read - Reads from a file.

Syntax

int read (tildes, buf, nbyte)
int tildes;
char *buf;
unsigned nbyte;

Description

READ (S)

fildes is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call.

read attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefmed.

Upon successful completion, read returns the number of bytes actu­
ally read and placed in the buffer; this number may be less than nbyte
if the file is associated with a communication line (see ioctl (S) and
tty (M)), or if the number of bytes left in the file is less than nbyte
bytes. A value of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If ° _NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a character special file
that has no data currently available:

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data becomes
available.

October 10, 1988 Page 1

READ(S) READ (S)

read will fail if one or more of the following are true:

fildes is not a valid file descriptor open for reading. [EBADF]

but points outside the allocated address space. [EFAULT]

A signal was caught during the read system call. [EINTR]

Return Value

Upon successful completion a nonnegative integer is returned indicat­
ing the number of bytes actually read. Otherwise, -1 is returned and
errno is set to indicate the error.

See Also

createS), dupeS), fcntl(S), ioctl(S), open(S), pipe(S), rdchk(S), tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

Page 2 October 10, 1988

REGEX(S) REGEX(S)

Name

regex, regcmp - Compiles and executes regular expressions.

Syntax

char *regcmp(stringl[,string2, 00 o],(char *)0);
char *stringl, *string2, 00 0;

char *regex(re,subject[,retO, 00 on;
char *re, *subject, *retO, 00 0;

extern char * _Jocl;

Description

regcmp compiles a regular expression and returns a pointer to the
compiled form. malloc (S) is used to create space for the vector. It is
the user's responsibility to free unneeded space so allocated. A zero
return from regcmp indicates an incorrect argument. regcmp (CP) has
been written to generally preclude the need for this routine at execu­
tion time.

regex executes a compiled pattern against the subject string. Addi­
tional arguments are passed to receive values back. regex returns zero
on failure or a pointer to the next unmatched character on success. A
global character pointer __ locI points to where the match began.
regcmp and regex were derived from the editor, ed(C) however, the
syntax and semantics have been changed slightly. The following are
the valid symbols and their associated meanings.

[] * 0 A These symbols retain their current meaning.

$ Matches the end of the string, \n matches the newline.

Within brackets the minus means through. For example,
[a-z] is equivalent to [abcd 0 0 oxyz]. The - can appear as
itself only if used as the last or first character. For example,
the character class expression []-] matches the characters
] and-.

+ A regular expression followed by + means "one or more
times". For example, [0-9]+ is equivalent to [0-9][0-9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which is
the maximum. If only m is present (e.g., {m}), it indicates
the exact number of times the regular expression is to be
applied. {m,} is analogous to {m,infinity}. The plus (+) and

October 10, 1988 Page 1

REGEX(S) REGEX(S)

star (*) operations are equivalent to {I,} and {O,} respec­
tively.

(•••)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+l)th argument
following the subject argument. At present, at most ten
enclosed regular expressions are allowed. regex makes its
assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g. *, +, {},
can work on a single character or a regular expression
enclosed in parenthesis. For example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

See Also

ed(C), regcmp(CP), free(S), malloc(S)

Examples

Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr=regcmp(' '\0' ',O»,cursor);
free(ptr);

This example will match a leading newline in the subject string
pointed at by cursor.

Example 2:

char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-Za-zO-9]{0,7})$0",0);
newcursor = regex(name," 123Testing321 ",retO);

Tnis example will match through the string "Testing3" and will
return the address of the character after the last matched character
(cursor+ll). The string "Testing3" will be copied to the character
array retO.

Example 3:
#include "file.i"
char * string , *newcursor;

newcursor = regex(name,string);

Page 2 October 10, 1988

REGEX(S) REGEX(S)

This example applies a precompiled regular expression in file.i (see
regcmp(CP» against string.

Notes

The user program may run out of memory if regcmp is called itera­
tively without freeing the vectors no longer required. The following
user-supplied replacement for maUoc (S) reuses the same vector sav­
ing time and space:

j* user's program *j

malloc(n)
{

static int rebuf[256];
return &rebuf;

October 10, 1988 Page 3

REGEXP (S) REGEXP(S)

Name

regexp - Regular expression compile and match routines.

Syntax

#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile(instring, expbuf, endbuf, eot)
char *instring, *expbuf, *endbuf;

int step(string, expbuf)
char *string, *expbuf;

Description

This page describes general purpose regular expression matching rou­
tines in the form of ed(C), defmed in /usr/include/regexp.h. Pro­
grams such as ed(C), sed(C), grep(C), expr(C), etc., which perform
regular expression matching use this source file. In this way, only this
file need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared before
the #include <regexp.h> statement. These macros are used by the
compile routine.

GETC()

PEEKC()

UNGETC(c)

October 10, 1988

Return the value of the next character in the
regular expression pattern. Successive calls
to GETC() should return successive charac­
ters of the regular expression.

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETCO)·

Cause the argument c to be returned by the
next call to GETC() (and PEEKC(». No more
than one character of pushback is ever needed
and this character is guaranteed to be the last
character read by GETC(). The value of the

Page 1

REGEXP (5) REGEXP(S)

macro UNGETC(c) is always ignored.

RETURN (pointer) This macro is used on normal exit of the com­
pile routine. The value of the argument
pointer is a pointer to the character after the
last character of the compiled regular expres­
sion. This is useful to programs which have
memory allocation to manage.

ERROR(val)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

This is the abnormal return from the compile
routine. The argument val is an error number
(see table below for meanings). This call
should never return.

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different pointers to
input characters. It is sometimes used in the INIT declaration (see
below). Programs which call functions to input characters or have
characters in an external array can pass down a value of «char *) 0)
for this parameter.

The next parameter expbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled expres­
sion cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(C), this character is usually a I.

Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the
function compile and the opening curly brace ({). It is used for

Page 2 October 10, 1988

REGEXP(S) REGEXP (S)

dependent declarations and initializations. Most often it is used to set
a register variable to point to the beginning of the regular expression
so that this register variable can be used in the declarations for
GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations taken
from grep(C).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbu! is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there is a
match, two external character pointers are set as a side effect to the
call to step. The variable set in step is loel. This is a pointer to the
first character that matched the regular expression. The variable loc2,
which is set by the function advance, points to the character after the
last character that matches the regular expression. Thus if the regular
expression matches the entire line, loc 1 will point to the first character
of string and loc2 will point to the null at the end of string.

step uses the external variable eirc! which is ·set by compile if the reg­
ular expression begins with ". If this is set then step will only try to
match the regular expression to the beginning of the string. If more
than one regular expression is to be compiled before the the first is
executed, the value of eirc! should be saved for each compiled expres­
sion and circ! should be set to that saved value before each call to
step.

The function advance is called from step with the same arguments as
step. The purpose of step is to step through the string argument and
call advance until advance returns a one indicating a match, or until
the end of string is reached. If one wants to constrain string to the
beginning of the line in all cases, step need not be called; simply call
advance.

When advance encounters a * or \{ \} sequence in the regular expres­
sion it will advance its pointer to the string to be matched as far as
possible, and will recursively call itself trying to match the rest of the
string to the rest of the regular expression. As long as there is no
match, advance will back up along the string until it finds a match, or
reaches the point in the string that initially matched the * or \{ \}. It is
sometimes desirable to stop this backing up before the initial point in

October 10, 1988 Page 3

REGEXP(S) REGEXP (S)

the string is reached. If the external character pointer locs is equal to
the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero.
This is used by ed(C) and sed (C) for substitutions done globally (not
just the first occurrence, but the whole line) so, for example, expres­
sions like s/y*lIg do not loop forever.

The routines ecmp and getrange are trivial and are called by the rou­
tines previously mentioned.

See Also

ed(C), grep(C), sed(C).

Examples

The following is an example of how the regular expression macros and
calls look from grep (C):

#defineINIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

r~gister char *sp = instring;
(*sp++)
(*sp)
(--*sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE], '\0 ');

if(step(linebuf, expbuf)
succeed();

Files

/usr/include/regexp.h

Notes

The handling of circ! is awkward.
The routine ecmp is equivalent to the Standard I/O routine strncmp
and should be replaced by that routine.

Page 4 October 10, 1988

SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char *sbrk (incr)
int incr;

int brk (addr)
char *addr;

Description

SBRK (S)

sbrk and brk are used to dynamically change the amount of space
allocated for the data segment of the calling process; see exec (S). The
change is made by resetting the break value of the process. The break
value is the address of the first location beyond the end of the data
segment. The amount of allocated space increases as the break value
increases.

sbrk adds incr bytes to the break value and changes the allocated
space accordingly. incr can be negative, in which case the amount of
allocated space is decreased.

In 286 large model programs, if incr is greater than the number of
unallocated bytes remaining in the current data segment, sbrk
automatically allocates all the requested bytes in a new data segment.
This guarantees that the requested bytes will reside entirely in one
segment. If incr is negative and its absolute value is equal to the
number of allocated bytes in the current data segment, the segment is
automatically freed for other use. If incr is negative and its absolute
value is greater than the number of allocated bytes in the current seg­
ment, the segment is freed, and the additional bytes are removed from
the previous data segment. (The previous data segment contains space
allocated by the most recent sbrk that did not affect the current seg­
ment.)

sbrk will fail without making any change in the allocated space if:

A change would result in more space being allocated than is
allowed by a system-imposed maximum (see u lim it (S».
[ENOMEM]

An attempt is made to remove more space than has actually been
allocated.

An attempt to remove space causes the new break value to be less
than the original break value. The original break value is always
taken to be break value when process execution began plus any

October 10, 1988 Page 1

SBRK (S) SBRK (S)

shared data bytes that have been allocated since that time.

brk sets the the current break value to addr, and changes the allocated
space accordingly. brk fails if the address references a data segment
that does not exist, or if it references beyond the maximum possible
size of the current data segment.

Return Value

Upon successful completion, sbrk returns a pointer to the beginning of
the allocated space. brk returns 0 on successful completion. Other­
wise, a value of -1 is returned and ermo is set to indicate the error. In
large model programs, if sbrk allocates a new data segment, the return
value is the starting address of that new segment.

See Also

exec(S)

Notes

In 286 large model programs, the call "sbrk(O)" does not necessarily
return the starting address of the next sbrk call. In particular, if the
next call causes an additional data segment to be allocated, the break
values returned by these two calls will not be the same. The return
value from "sbrk(O)" should only be regarded as a marker for the ori­
ginal end of data.

Page 2 October 1 0, 1988

SCANF (S)

Name

scanf, fscanf, sscanf - Converts and fonnats input.

Syntax

#include <stdio.h>

int scanf (format [, pointer] ...
char *format;

int fscanf (stream, format [, pointer] ...
FILE *stream;
char *format;

int sscanf (s, format [,pointer] ...
char *s, *format;

Description

SCANF (S)

scanf reads from the standard input stream stdin. fscanf reads from
the named input stream. sscanf reads from the character string s.
Each function reads characters, interprets them according to a fonnat,
and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control string
may contain:

1. Blanks, tabs, or new lines which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not %), which must match the next charac­
ter of the input stream.

3. Conversion specifications, consIstmg of the character %, an
optional assignment suppressing character *, an optional numeri­
cal maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the correspond­
ing argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field
which is to be skipped. An input field is defined as a string of non­
space characters; it extends to the next inappropriate character or until
the field width, if specified, is exhausted. For all descriptors except
"[" and "c", white space preceding an input field is ignored.

October 10, 1988 Page 1

SCANF(S) SCANF(S)

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a res­
tricted type. For a suppressed field, no pointer argument is given. The
following conversion characters are allowed:

% A single % is expected in the input at this point; no assignment is
done.

d A decimal integer is expected; the corresponding argument should
be an integer pointer.

u An unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a space char­
acter or a newline.

c A character is expected; the corresponding argument should be a
character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character, use
% Is. If a field width is given, the corresponding argument should
refer to a character array; the indicated number of characters is
read.

e, f, g

Page 2

A floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly contain­
ing a decimal point, followed by an optional exponent field con­
sisting of an E or an e, followed by an optionally signed integer.

Indicates string data and the normal skip over leading white space
is suppressed. Tne left bracket is followed by a set of characters,
which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of
characters in the scanset. The caret C), when it appears as the first
character in the scanset, serves as a complement operator and
redefines the scanset as the set of all characters not contained in
the remainder of the scanset string. There are some conventions
used in the construction of the scan set. A range of characters may
be represented by the construct first-last, thus [0123456789] may
be expressed [0-9]. Using this convention, first must be lexically

Oct<?ber 10, 1988

SCANF (S) SCANF (S)

less than or equal to last, or else the dash will stand for itself. The
dash will also stand for itself whenever it is the first or the last
character in the scan set. To include the right square bracket as an
element of the scanset, it must appear as the first character (possi­
bly preceded by a caret) of the scanset, and in this case it will not
be syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array large
enough to hold the data field and the terminating \0, which will be
added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized and/or
preceded by I or h to indicate that a pointer to long or to short rather
than to int is in the argument list. Similarly, the conversion characters
e, f, and g may be capitalized and/or preceded by I to indicate that a
pointer to double rather than to float is in the argument list. The I or h
modifier is ignored for other conversion characters.

scan! conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. (In the latter
case, the conflicting character is left unread in the input stream.) This
is very important to remember, because subtle errors can occur when
not taking this into account.

scan! returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict
between an input character and the control string. If the input ends
before the first conflict or conversion, EOF is returned.

See Also

atof(S), getc(S), printf(S), strtod(S), strtol(S)

Examples

The call:

int i; float x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

October 10, 1988 Page 3

SCANF(S) SCANF (S)

will assign to i the value 25, to x the value 5.432, and name will con­
tain "thompson\O". Or:

int i; float x; char name[50];
scanf ("%2d%f%*d%[1234567890]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name. The next call to getchar (see getc(S)) will return "a".

Diagnostics

These functions return EOF on end of input and a short count for miss­
ing or illegal data items.

Notes

The success of literal matches and suppressed assignments is not
directly determinable.

Trailing whitespace (including a newline) is left unread unless
matched in the control string.

Page 4 October 10, 1988

SDENTER (S) SDENTER (S)

Name

sdenter, sdleave - Synchronizes access to a shared data segment.

Syntax

#include <sys/sd.h>

int sdenter(addr ,flags)
char *addr;
int flags;

int sdleave(addr)
char *addr;

Description

sdenter is used to indicate that the current process is about to access
the contents of a shared data segment. addr is the valid return code
from a previous sdget (S) call. The actions performed depend on the
value of flags. flags values are formed by OR-ing together entries
from the following list:

SD_NOWAIT If another process has called sdenter but not sdleave
for the indicated segment, and the segment was not
created with the SD_VNLOCK flag set, return an
ENAVAIL error instead of waiting for the segment to
become free.

SD_ WRITE Indicates that the process wants to write data to the
shared data segment. A process that has attached to
a shared data segment with the SD _RDONL Y flag set
will not be allowed to enter with the SD _WRITE flag
set.

sdleave is used to indicate that the current process is done modifying
the contents of a shared data segment.

Only changes made between invocations of sdenter and sdleave are
guaranteed to be reflected in other processes. sdenter and sdleave are
very fast; consequently, it is recommended that they be called fre­
quently rather than leave sdenter in effect for any period of time. In
particular, system calls should be avoided between sdenter and
sdleave calls.

~) The fork system call is forbidden between calls to sdenter and sdleave
if the segment was created without the SD_UNLOCK flag.

October 10, 1988 Page 1

SDENTER (S) SDENTER (S)

Return Value

Successful calls return O. Unsuccessful calls return -1, and errno is set
to indicate the error. errno is set to "EINVAL if a process does an
sdenter with the SD_ WRITE flag set and the segment is already
attached with the SD_RDONLY flag set. errno is set to ENAVAIL if the
SD _NOWAIT flag is set for sdenter call and the shared data segment is
not free.

See Also

sdget(S), sdgetv(S)

Notes

This feature is a XENIX specific enhancement and may not be present
on all UNIX implementations. This routine must be linked with the
linker option -Ix.

Page 2 October 10, 1988

SDGET(S) SDqET(S)

Name

sdget, sdfree - Attaches and detaches a shared data segment.

Syntax

#include <sys/sd.h>

char *sdget(path, flags, [size, mode])
char *path;
int flags, mode;
long size;

int sdfree(addr);
char *addr;

Description

sdget attaches a shared data segment to the data space of the current
process. The actions performed are controlled by the value of flags.
flags values are constructed by OR-ing flags from the following list:

SD _RDONL Y Attach the segment for reading only.

SD_ WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists and is not in use
(active), this flag will have the same effect as creating a
segment from scratch. Otherwise, the segment is
created according to the values of size and mode. Read
and write access to the segment is granted to other
processes based on the permissions passed in mode, and
functions the same as those for regular files. Execute
permission is meaningless. The segment is initialized
to contain all zeroes.

SD_UNLOCK If the segment is created because of this call, the seg­
ment will be made so that more than one process can be
between sdenter and sdleave calls.

sdfree detaches the current process from the shared data segment that
is attached at the specified address. If the current process has done
sdenter but not an sdleave for the specified segment, sdleave will be
done before detaching the segment.

When no process remains attached to the segment, the contents of that
segment disappear, and no process can attach to the segment without
creating it by using the SD_CREAT flag in sdget. errno is set to EEX-
1ST if a process tries to create a shared data segment that exists and is
in use. errno is set to ENOTNAM if a process attempts an sdget on a

October 10, 1988 Page 1

SDGET(S) SDGET(S)

file that exists but is not a shared data type.

Notes

Use of the SD_UNLOCK flag on systems without hardware support for
shared data may cause severe performance degradation.

For 286 programs, it is strongly recommended that sdget and other
shared data functions be reserved for large model programs only.
Small or middle model programs that attempt to use shared data may
run out of available memory. Also, due to the 286 hardware, it is not
possible to enforce the read-only aspect of small model shared data.
However, read-only segments are honored in large model programs.

The 386 provides a 32 bit address space, even in small model. As a
result, shared data may be conveniently used without regard to the res­
trictions that apply to 286 programs.

sdget automatically increments the process's original break value to
the memory location immediately after the shared data segment. This
affects subsequent sbrk or brk calls which attempt to restore the origi­
nal break value. In particular, attempts to restore the break value to its
value before the sdget call causes an error.

This feature is a XENIX specific enhancement and may not be present
in all UNIX implementations. This routine must be linked using the
linker option -Ix.

Return Value

On successful completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, and errno is set to
indicate the error. errno is set to EINV AL if a process does an sdget on
a shared data segment to which it is already attached. errno is set to
EEXIST if a process tries to create a shared data segment that exists
and is in use. errno is set to ENOTNAM if a process attempts an sdget
on a file that exists but is not a shared data type.

The mode parameter must be included on the first call of the sdget()
function.

See Also

sdenter(S), sdgetv(S), sbrk(S)

Notes

The size variable in sdget has changed from unsigned to long between

Page 2 October 10, 1988

SDGET(S) SDGET(S)

XENIX Version 3.0 and XENIX System V. Although this requires that
source code be modified to use a long size parameter when compiling
with the System V libraries, an unsigned size parameter will still be
correctly interpreted by the kernel when passed by binaries compiled
with the Version 3.0 libraries.

October 10, 1988 Page 3

SDGETV(S)

Name

sdgetv, sdwaitv - Synchronizes shared data access.

Syntax

#include <sys/sd.h>

int sdgetv(addr)
int sdwaitv(addr, vnum)
char *addr;
int vnum;

Description

SDGETV(S)

sdgetv and sdwaitv may be used to synchronize cooperating processes
that are using shared data segments. The return value of both routines
is the version number of the shared data segment attached to the pro­
cess at address addr. The version number of a segment changes when­
ever some process does an sdleave for that segment.

sdgetv simply returns the version number of the indicated segment.

sdwaitv forces the current process to sleep until the version number for
the indicated segment is no longer equal to vnum.

Return Value

Upon successful completion, both sdgetv and sdwaitv return a positive
integer that is the current version number for the indicated shared data
segment. Otherwise, a value of -1 is returned, and errno is set to indi­
cate the error.

See Also

sdenter(S), sdget(S)

Notes

This routine must be linked using the linker option -Ix.

October 10, 1988 Page 1

SELECT(S) SELECT(S)

Name

select - synchronous I/O multiplexing

Syntax

#include <sys/types.h>
#include <sys/select.h>
#include <sys/times.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
fd _set *readfds, *writefds, *exceptfds;
struct timeval *timeout;

FD SET(fd, &fdset)
FD-CLR(fd, &fdset)
FD-ISSET(fd, &fdset)
FD-ZERO(&fdset)
int Cd;
fd _set fdset;

Description

select examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are
ready for reading, are ready for writing, or have an exceptional condi­
tion pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descriptors from 0 through nfds -1 in the descriptor
sets are examined. On return, select replaces the given descriptor sets
with subsets consisting of those descriptors that are ready for the
requested operation. The total number of ready descriptors in all the
sets is returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The
following macros are provided for manipulating such descriptor sets:
FD _ ZERO(&fdset) initializes a descriptor set fdset to the null set.
FD _SET(fd, &fdset) includes a particular descriptor fd in fdset.
FD_CLR(fd, &fdset) removesfd fromfdset. FD_ISSET(fd, &fdset) is
nonzero if fd is a member of fdset, zero otherwise. The behavior of
these macros is undefined if a descriptor value is less than zero or
greater than or equal to FD _SETSIZE, which is normally at least equal
to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to
wait for the selection to complete. If timeout is a zero pointer, the
select blocks indefinitely. To effect a poll, the timeout argument
should be non-zero, pointing to a zero-valued timeval structure.

October 10, 1988 Page 1

SELECT(S) SELECT(S)

Any of readfds, writefds, and exceptfds may be given as zero pointers
if no descriptors are of interest.

Return Value

select returns the number of ready descriptors that are contained in the
descriptor sets, or -1 if an error occurred. If the time limit expires then
select returns O. If select returns with an error, including one due to an
interrupted call, the descriptor sets will be unmodified.

Errors

An error return from select indicates:

[EBADF]

[EINTR]

[EINVAL]

See Also

read(S), write(S)

Notes

One of the descriptor sets specified an invalid
descriptor.

A signal was delivered before the time limit expired
and before any of the selected events occurred.

The specified time limit is invalid. One of its com­
ponents is negative or too large. Or, the device
driver being polled has not implemented select sup­
port.

select should probably return the time remaining from the original
timeout, if any, by modifying the time value in place. This may be
implemented in future versions of the system. Thus, it is unwise to
assume that the timeout value will be unmodified by the select call.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Page 2 October 10, 1988

SEMCTL (S)

Name

semctl - Controls semaphore operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid ds *buf;
ushort *arnly;

} arg;

Description

SEMCTL (S)

semetl provides a variety of semaphore control operations as specified
byemd.

The following emds are executed with respect to the semaphore speci­
fied by semid and semllllm:

GETVAL Return the value of semval (see intro (S».

SETVAL Set the value of semval to arg.val. When this emd is
successfully executed, the semadj value correspond­
ing to the specified semaphore in all processes is
cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semnent. {READ}

GETZCNT Return the value of semzent. {READ}

The following emd s return and set, respectively, every semval in the
set of semaphores.

GETALL Place semvals into array pointed to by arg.array.

SETALL Set semvals according to the array pointed to by
arg.array. When this emd is successfully executed
the semadj values corresponding to each specified
semaphore in all processes are cleared.

October 10, 1988 Page 1

SEMCTL (S) SEMCTL (S)

The following emd s are also available:

Page 2

IPC STAT Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in intro(S).

IPC SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:

sem _perm.uid
sem _perm.gid
sem_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has
an effective user ID equal to either that of the super­
user or to the value of sem perm.uid in the data
structure associated with semld.

IPC RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This cmd can
only be executed by a process that has an effective
user ID equal to either that of the super-user or to the
value of sem perm.uid in the data structure associ­
ated with sem7d.

semetl will fail if one or more of the following are true:

semid is not a valid semaphore identifier. [EINVAL]

semnum is less than zero or greater than sem_nsems. [EINVAL]

emd is not a valid command. [EII\ VAL]

emd is equal to GETALL or IPe_STAT and arg points to an
address in read-only shared data. [EINVAL]

Operation permission is denied to the calling process (see
intro(S». [EACCES]

cmd is SETV AL or SE'fALL and the value to which semval is
to be set is greater than the system imposed maximum.
[ERANGE]

cmd is equal to IPC _ RMID or IPC _SET and the effective user
ID of the calling process is not equal to that of super-user and it
is not equal to the value of sem perm.uid in the data structure
associated with semid. [EPERM]

October 10, 1988

SEMCTL (S) SEMCTL (S)

arg.bufpoints to an illegal address. [EFAULT]

arg.array points to an illegal address. [EFAULT]

Return Value

Upon successful completion, the value returned depends on cmd as
follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value ofO.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

intro(S), semget(S), semop(S)

Notes

8086/80286 programs using this function must be compiled with the -
Me compiler option.

Octobcr 10, 1988 Pagc 3

SEMGET(S) SEMGET(S)

Name

semget - Gets set of semaphores.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key t key;
int nsems, semflg;

Description

semget returns the semaphore identifier associated with key.

A semaphore identifier, and an associated data structure and set con­
taining nsems semaphores (see intro(S» are created for key if one of
the following are true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore
identifier is initialized as follows:

sem perm.cuid, sem perm.uid, sem perm.cgid, and
sem =perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of sem perm.mode are set equal to the low-
order 9 bits of semjfg . -

sem _ nsems is set equal to the value of nsems .

sem _ otime is set equal to 0 and sem _ ctime is set equal to the
current time.

semget will fail if one or more of the following are true:

nsems is either less than or equal to zero or greater than the
system-imposed limit. [EINVAL]

A semaphore identifier exists for key, but operation permission
(see intro(S)) as specified by the low-order 9 bits of semjfg would
not be granted. [EACCES]

October 10. 1988 Page 1

SEMGET(S) SEMGET(S)

A semaphore identifier exists for key, but the number of sema­
phores in the set associated with it is less than nsems and nsems is
not equal to zero. [EINVAL]

A semaphore identifier does not exist for key and (semjlg &
IPC_CREAT) is "false". [ENOENT]

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed system wide semaphore
identifiers would be exceeded. [ENOSPC]

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed system wide semaphores
would be exceeded. [ENOSPC]

A semaphore identifier exists for key but ((semjlg & IPC_CREAT)
and (semjlg & IPC_EXCL» is "true". [EEXIST]

Return Value

Upon successful completion, a non-negative integer, namely a sema­
phore identifier, is returned. Otherwise, a value of -1 is returned and
errna is set to indicate the error.

See Also

intro(S), semctl(S), semop(S), stdipc(S).

Notes

8086/80286 programs using this function must be compiled with the -
Me compiler option.

Page 2 October 10, 1988

SEMOP (S) SEMOP (S)

Name

semop - Performs semaphore operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf *sops;
int nsops;

Description

semop is used to automatically perform an array of semaphore opera­
tions on the set of semaphores associated with the semaphore identif­
ier specified by semid. sops is a pointer to the array of semaphore­
operation structures. nsops is the number of such structures in the
array. The contents of each structure includes the following members:

short
short
short

sem_num;
sem_op;
sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem _ op is performed on the
corresponding semaphore specified by semid and sem _ num.

sem_op specifies one of three semaphore operations as follows:

If sem _ op is a negative integer, one of the following will
occur:

If semval (see intro(S» is greater than or equal to the
absolute value of sem op, the absolute value of sem op
is subtracted from -semval. Also, if (semyg - &
SEM_UNDO) is "true", the absolute value of sem_op is
added to the calling process' semadj value (see exit(S))
for the specified semaphore.

If semval is less than the absolute value of sem op and
(semyg & IPC_NOWAIT) is "true", semop will return
immediately.

If semval is less than the absolute value of sem op and
(semJig & IPC_NOWAIT) is "false", semop will incre­
ment the semncnt associated with the specified sema­
phore and suspend execution of the calling process until

October 10, 1988 Page 1

SEMOP (S)

Page 2

SEMOP (S)

one of the following conditions occur.

semval becomes greater than or equal to the abso­
lute value of sem op. When this occurs, the value
of semnent assoCiated with the specified sema­
phore is decremented, the absolute value of
sem _ op is subtracted from semval and, if (sem.Jig
& SEM UNDO) is "true", the absolute value of
sem _ op -is added to the calling process' semadj
value for the specified semaphore.

The semid for which the calling process is await­
ing action is removed from the system (see
semetl (S». When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be
caught. When this occurs, the value of semnent
associated with the specified semaphore is decre­
mented, and the calling process resumes execution
in the manner prescribed in signal (S).

If sem_op is a positive integer, the value of sem_op is added
to semval and, if (sem.Jig & SEM_UNDO) is "true", the
value of sem _ op is subtracted from the calling process'
semadj value for the specified semaphore.

If sem _ op is zero, one of the following will occur:

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem.Jig &
IPC NO WAIT) is "true", semop will return immedi­
ately.

If semval is not equal to zero and (sem.Jig &
IPC_NOWAIT) is "false", semop will increment the
semzent associated with the specified semaphore and
suspend execution of the calling process until one of the
following occurs:

semval becomes zero, at which time the value of
semzent associated with the specified semaphore is
decremented.

The semid for which the calling process is await­
ing action is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value of
-1 is returned.

October 10, 1988

SEMOP (S) SEMOP (S)

The calling process receives a signal that is to be
caught. When this occurs, the value of semzcnt
associated with the specified semaphore is decre­
mented, and the calling process resumes execution
in the manner prescribed in signal (S).

semop will fail if one or more of the following are true for any of the
semaphore operations specified by sops:

semid is not a valid semaphore identifier. [EINVAL]

sem _ num is less than zero or greater than or equal to the number of
semaphores in the set associated with semid. [EFBIG]

nsops is greater than the system-imposed maximum. [E2BIG]

Operation permission is denied to the calling process (see
intro(S». [EACCES]

The operation would result in suspension of the calling process but
(semJig & IPC_NOWAIT) is "true". [EAGAIN]

The limit on the number of individual processes requesting a
SEM _UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the calling pro­
cess requests a SEM_UNDO would exceed the limit. [EINVAL]

An operation would cause a semval to overflow the system­
imposed limit. [ERANGE]

An operation would cause a semadj value to overflow the system­
imposed limit. [ERANGE]

sops points to an illegal address. [EFAULT]

Upon successful completion, the value of semid for each semaphore
specified in the array pointed to by sops is set equal to the process ID
of the calling process.

Return Value

If semop returns due to the receipt of a signal, a value of -1 is returned
to the calling process and errno is set to EINTR. If it returns due to the
removal of a semid from the system, a value of -1 is returned and
errno is set to EIDRM.

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

October 10, 1988 Page 3

SEMOP (S) SE1\;fOP (S)

See Also

exec(S), exit(S), fork(S), intro(S), semctl(S), semget(S), signal(S)

Notes

If SEMVMX = 32767, semop will not be able to make semval
overflow the limit (ERANGE) because sem_op~ +32768 (signed short)
looks like negative sem_op. Therefore, it will not increase semval to
put it over the limit; instead, it will try to subtract ~ 32768 from sem­
val (EAGAIN). 8086/80286 programs using this function must be
compiled with the -Me compiler option.

Page 4 October 10, 1988

SETBUF (S)

Name

setbuf, setvbuf - Assigns buffering to a stream.

Syntax

#include <stdio.h>

void setbuf (stream, but)
FILE *stream;
char *buf;
int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

Description

SETBUF (S)

setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an
automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

A manifest constant BUFSIZ, defined in the <stdio.h> file, tells how
big an array is needed:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before it is
read or written. type detennines how stream will be buffered. Legal
values for type (defined in stdio.h) are:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full, or
input is requested.

_IONBF Causes input/output to be completely unbuffered.

If buf is not the Null pointer, the array it points to will be used for
buffering, instead of an automatically allocated buffer. size specifies
the size of the buffer to be used. The constant BUFSIZ in <stdio.h> is
suggested as a good buffer size. If input/output is unbuffered, buf and
size are ignored.

By default, output to a tenninal is line buffered and all other
input/output is fully buffered.

October 10, 1988 Page 1

SETBUF(S) SETBUF (S)

A buffer is normally obtained from malloe(S) upon the first gete(S) or
pute (S) on the file, except that output streams directed to terminals,
and the standard error stream stderr are normally not buffered. A
common source of error is allocation of buffer space as an
"automatic" variable in a code block, and then failing to close the
stream in the same block.

See Also

fopen(S), getc(S), malloc(S), putc(S), stdio(S)

Diagnostics

If an illegal value for type or size is provided, setvbuf returns a non­
zero value. Otherwise, the value returned will be zero.

Notes

Backwards compatibility is provided through the files
/lib/compat/[SML]setvbuf.o.

Page 2 October 10, 1988

SETJMP (S)

Name

setjmp, longjmp - Performs a nonlocal "goto".

Syntax

#include <setjmp.h>

int setjmp (env)
jmp _ buf env;

void longjmp (env, val)
jmp bufenv;
int val;

Description

SETJMP (S)

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

setjmp saves its stack environment in env for later use by longjmp. It
returns a value of 0.

longjmp restores the environment saved by the last call of setjmp. It
then returns in such a way that execution continues as if the call of
setjmp had just returned the value val to the corresponding call to
setjmp. The routine which calls setjmp must not itself have returned
in the interim. longjmp cannot return a value of 0. If longjmp is
invoked with a second argument of 0, it will return a value of 1. All
accessible data have values as of the time longjmp was called. The
only exception to this is register variables. The value of register vari­
ables is undefined in the routine that called setjmp when the
corresponding longjmp is invoked.

See Also

signal(S)

Warning

If longjmp is called even though env was never primed by a call to
setjmp, or when the last such call was in a function which has since
returned, absolute chaos is guaranteed.

October 10, 1988 Page 1

SETPGRP (S) SETPGRP (S)

Name

setpgrp - Sets process group ID.

Synta~

int setpgrp ()

Description

setpgrp sets the process group ID of the calling process to the process
ID of the calling process and returns the new process group ID.

There are many ramifications to be considered before invoking
setpgrp. When a process is made a process group leader with setpgrp,
the terminal that controlled the process that issued the setpgrp state­
ment is lost as the controlling terminal for the new process group. The
new process group takes as its controlling terminal the next terminal it
opens that is not already open. All child processes of the new process
group leader are controlled by the new controlling terminal.

The controlling terminal is responsible for signals (lNTR, KILL, EOF)
sent to the process group leader and it child processes. If there is no
controlling terminal, it becomes more difficult to interrupt a process.

As an example, setpgrp is used to separate daemon processes from
controlling terminals so that they may not be interrupted from any ter­
minal by a KILL or INTR signal.

Return Value

setpgrp returns the value of the new process group ID.

See Also

exec(S), fork(S), getpid(S), intro(S), kill(S), signal(S), termio(M)

October 10, 1988 Page 1

SETUID (S)

Name

setuid, setgid - Sets user and group IDs.

Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;

Description

::'"J:;lV1U ~~)

setuid is used to set the real user ID and effective user ID of the calling
process.

setgid is used to set the real group ID and effective group ID of the
calling process.

If the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its
real user (group) ID is equal to uid (gid), the effective user (group) ID
is set to uid (gid).

setuid will fail if the real user (group) ID of the calling process is not
equal to uid (gid) and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINV AL]

If the effective user ID of the calling process is not super-user, but the
saved set-user (group) ID from exec (S) is equal to uid (gid), the effec­
tive user (group) ID is set to uid (gid).

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

getuid(S), intro(S)

October 10, 1988 Page 1

SHMCTL (S) SHMCTL (S)

Name

shmctl - Controls shared memory operations.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid _ ds *buf;

Description

shmctl provides a variety of shared memory control operations as
specified by cmd. The following cmd s are available:

IPC STAT

IPC SET

IPC RMID

October 10, 1988

Place the current value of each member of the
data structure associated with shmid into the
structure pointed to by buf. The contents of this
structure are defined in intro(S).

Set the value of the following members of the
data structure associated with shmid to the
corresponding value found in the structure
pointed to by bu!:

shm_perm. uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that
has an effective user ID equal to either that of
the super-user or to the value of shm _perm.uid
in the data structure associated with shmid.

Remove the shared memory identifier specified
by shmid from the system and destroy the shared
memory segment and data structure associated
with it. This cmd can only be executed by a pro­
cess that has an effective user ID equal to either
that of the super-user or to the value of
shm perm.uid in the data structure associated
withshmid.

Page 1

SHMCTL (S) SHMCTL (S)

Diagnostics

shmctl will fail if one or more of the following are true:

shmid is not a valid shared memory identifier. [EINVAL]

cmd is not a valid command. [EINVAL]

cmd is equal to IPC _STAT and operation permission is denied to
the calling process (see intro(S». [EACCES]

cmd is equal to IPC _ RMID or IPC _SET and the effective user ID of
the calling process is not equal to that of the super-user and it is
not equal to the value of shm perm.uid in the data structure asso­
ciated with shmid. [EPERM] -

bu/points to an illegal address. [EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

intro(S), shmget(S), shmop(S)

Notes

8086/80286 programs using this function must be compiled with -Me
compiler option.

Page 2 October 10, 1988

SHMGET(S) SHMGET(S)

Name

shmget - Gets a shared memory segment.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key t key;
int Size, shmflg;

Description

shmget returns the shared memory identifier associated with key.

A shared memory identifier and an associated data structure and
shared memory segment of size size bytes (see intro(S) are created
for key if one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associated
with it, and (shmfig & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

shm perm.cuid, shm perm.uid, shm perm.cgid, and
shm =perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of shm _perm.mode are set equal to the low­
order 9 bits of shmfig. shm _ segsz is set equal to the value of size.

shm lpid, shm naUch, shm atime, and shm dtime are set equal
to 0.- - - -

shm _ ctime is set equal to the current time.

shmget will fail if one or more of the following are true:

size is less than the system-imposed minimum or greater than the
system-imposed maximum. The minimum for 286 processes is 1
byte, and the maximum is 64K or 65535 bytes. The minimum and
maximum for 386 processes are configurable. [EINVAL]

October 10, 1988 Page 1

SHMGET(S) SHMGET(S)

A shared memory identifier exists for key but operation permission
(see intro(S» as specified by the low-order 9 bits of shmfig would
not be granted. [EACCES]

A shared memory identifier exists for key but the size of the seg­
ment associated with it is less than size, which cannot be equal to
zero. [EINV AL]

A shared memory identifier does not exist for key and (shmfig &
IPC_CREAT) is "false". [ENOENT]

A shared memory identifier is to be created but the system­
imposed limit on the maximum number of allowed shared memory
identifiers system wide would be exceeded. [ENOSPC]

A shared memory identifier and associated shared memory seg­
ment are to be created but the amount of available physical
memory is not sufficient to fill the request. [ENOMEM]

A shared memory identifier exists for key but ((shmfig &
IPC_CREAT) and (shmfig & IPC_EXCL)) is "true". [EEXIST]

Return Value

Upon successful completion, a non-negative integer, namely a shared
memory identifier, is returned. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

See Also

intro(S), shmctl(S), shmop(S), stdipc(S).

Notes

8086/80286 programs using this function must be compiled with -Me
compiler option.

Page 2 October 10, 1988

SHMOP (S)

Name

shmop - Performs shared memory operations.

Syntax

For 386 processes:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

For 286 processes:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char far *shmat (shmid, shmaddr, shmflg)
int shmid;
char far *shmaddr;
int shmflg;

int shmdt (shmaddr)
char far *shmaddr;

Description

SHMOP (S)

shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the cal­
ling process. The segment is attached at the address specified by one
of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

For 286 processes, if shmaddr is not equal to zero and (shmflg &
SHM_RND) is "true," the segment is attached at the first avail­
able address given by (shmaddr - (shmaddr modulus SHMLBA»
(SHMLBA = 64K or 65536 bytes).

October 10, 1988 Page 1

SHMOP (S) SHMOP (S)

If shmaddr is not equal to zero and (shmfig & SHM_RND) is
"true", the segment is attached at the address given by (shmaddr -
(shmaddr modulus SHMLBA».

If shmaddr is not equal to zero and (shmfig & SHM_RND) is
"false", the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmfig & SHM_RDONLY) is
"true", otherwise it is attached for reading and writing.

shmdt detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr. shmat
will fail and not attach the shared memory segment if one or more of
the following are true:

Page 2

shmid is not a valid shared memory identifier. [EINVAL]

Operation permission is denied to the calling process (see
intro(S». [EACCES]

The available data space is not large enough to accommodate the
shared memory segment. [ENOMEM]

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA» is an illegal address. [EINVAL]

shmaddr is not equal to zero, (shmfig & SHM_RND) is "false",
and the value of shmaddr is an illegal address. [EINVAL]

For 286 processes, the shared memory segment is already attached
by the calling process. [EINVAL]

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit. [EMFILE]

shmdt detaches the shared memory segment located at the address
specified by shmaddr from the calling process data segment.
[EINVAL]

shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment. [EINVAL]

October 10, 1988

SHMOP (S) SHMOP (S)

Return Values

Upon successful completion, the return values are as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

See Also

exec(S), exit(S), fork(S), intro(S), shmctl(S), shmget(S)

Notes

For 286 processes, if a program is compiled using small or middle
model, the char far variables cannot be used as arguments to the stan­
dard libc.a routines because these routines require char near pointers.
If the libc.a routines are required, the program must be compiled using
large or huge model. If both the libc.a routines and small or middle
model compiling are required, the XENIX 3.0 shared data system calls
must be used. Note that 8086/80286 programs using this function
must be compiled with the -Me compiler option.

Small data 386 processes must specify shmaddr equal to zero (i.e. you
must allow the system to attach the shared memory segment at what­
ever address it chooses).

October 10, 1988 Page 3

SHUTDN(S)

Name

shutdn - Flushes block I/O and halts the CPU.

Syntax

#include <sys/types.h>
#include <sys/param.h>
#include <sys/filsys.h>

void shutdn (sblk, nsblk, arg);
struct filsys *sblk, *nsblk;
int arg;

Description

SHUTDN(S)

shutdn causes all infonnation in memory that should be on disk to be
written out. This includes modified super-blocks, modified inodes,
and delayed block I/O. The super-blocks of all writable file systems
are flagged 'clean', so that they can be remounted without cleaning
when XENIX is rebooted. shutdn then prints "Nonnal System Shut­
down" on the console and halts the CPU.

The system then stays down or reboots dependent on whether arg is 0
or 1.

If sblk is greater than 1, it specifies the address of a super-block to be
written to the root device as the last I/O before the halt, provided that
nsblk is given as its bit-wise inverse. This facility is provided to allow
file system repair programs to supersede the system's copy of the root
super-block with one of their own.

If sblk is 1, the second argument is a command and the third argument
is the argument to the command. The CONFPANIC command, a sys­
tem configurable system call, is given the argument 0 to stay down, or
1 to reboot. When shutdn is called in this way, the purpose is not to
bring down the system, but rather, to give instructions to the kernel
regarding the way to deal with the next panic.

shutdn locks out all other processes while it is doing its work. How­
ever, it is recommended that user processes be killed off (see kill (S»
before calling shutdn as some types of disk activity could cause file
systems to not be flagged "clean".

The caller must be the super-user.

October 10, 1988 Page 1

SHUTDN(S) SHUTDN(S)

See Also

fsck(ADM), haltsys(ADM), shutdown(ADM), mount(S), kill(S)

Notes

This routine must be linked using the linker option -Ix.

Page 2 October 10, 1988

SIGNAL (S) SIGNAL (S)

Name

signal - Specifies what to do upon receipt of a signal.

Syntax

#include <signal.h>

int (*signal (sig, func»()
int sig;
int (*func)();

Description

signal allows the calling process to choose one of three ways in which
it is possible to handle the receipt of a specific signal. sig specifies
the signal and June specifies the choice.

sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01
SIGINT 02
SIGQUIT 03*
SIGILL 04*
SIGTRAP 05*
SIGIOT 06*
SIGEMT 07*
SIGFPE 08*
SIGKILL 09
SIGBUS 10*
SIGSEGV 11*
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRI 16
SIGUSR2 17
SIGCLD 18
SIGPWR 19

Hangup
Interrupt
Quit
Illegal instruction (not reset when caught)
Trace trap (not reset when caught)
I/O trap instruction
Emulator trap instruction
Floating-point exception
Kill (cannot be caught or ignored)
Bus error
Segmentation violation
Bad argument to system call
Write on a pipe with no one to read it
Alarm clock
Software termination signal
User-defined signal 1
User-defined signal 2
Death of a child (see Warning below)
Power fail (see Warning below)

See number 7 below for the significance of the asterisk in the above
list.

June is assigned one of three values: SIG_DFL, SIG_IGN, or aJunction
address. The actions prescribed by these values are described below.

The SIG _ DFL value causes termination of the process upon receipt of
a signal. Upon receipt of the signal sig, the receiving process is to be
terminated with the following consequences:

October 10, 1988 Page 1

SIGNAL (S) SIGNAL (S)

1. All of the receiving process' open file descriptors will be closed.

2. If the parent process of the receiving process is executing a wait,
it will be notified of the tennination of the receiving process and
the tenninating signal's number will be made available to the
parent process~ see wait(S).

3. If the parent process of the receiving process is not executing a
wait, the receiving process will be transfonned into a zombie
process (see exit(S) for definition of zombie process).

4. The parent process ID of each of the receiving process' existing
child processes and zombie processes will be set to 1. This
means the initialization process (see intro(S» inherits each of
these processes.

5. An accounting record will be written on the accounting file if the
system's accounting routine is enabled; see aeet (S).

6. If the receiving process' process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes that have a process group ID equal to the process group
ID of the receiving process.

7. A "core image" will be made in the current working directory of
the receiving process if sig is one for which an asterisk (*)
appears in the above list and the following conditions are met:

- The effective user ID and the real user ID of the receiving pro­
cess are equal.

- An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have a mode of 0666
modified by the file creation mask (see umask(S»), a file owner ID
that is the same as the effective user ID of the receiving process, a
file group ID that is the same as the effective group ID of the
receiving process

The SIG_IGN value causes the process to ignore a signal. The signal
sig is to be ignored. Note that the signal SIGKILL cannot be ignored.

AJunetion address value causes the process to catch a signal. Upon
receipt of the signal sig, the receiving process is· to eXecute the
signal-catching function pointed to by June. The signal number sig
will be passed a~ tht; ouly arguIIlt;Ut to t1tt; sigrml-l:atl:hing funct.ion.
There are the following consequences:

1. Upon return from the signal-catching function, the receiving pro­
cess will resume execution at the point it was interrupted and the
value of June for the caught signal w~ll be set to SIG _ DFL unless
the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

Page 2 October 10, 1988

SIGNAL (S) SIGNAL (S)

2. When a signal that is to be caught occurs during a read, a write,
an open, or an ioctl system call on a slow device (like a terminal;
but not a file), during a pause system call, or during a wait system
call that does not return immediately due to the existence of a
previously stopped or zombie process, the signal catching func­
tion will be executed and then the interrupted system call will
return a -1 to the calling process with errno set to EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIG­
KILL signal.

signal will fail if one or more of the following are true:

sig is an illegal signal number, including SIGKILL. [EINVAL]

Junc points to an illegal address. [EFAULT]

Return Value

Upon successful completion, signal returns the previous value of Junc
for the specified signal sig. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

See Also

kil1(C), kill(S), pause(S), ptrace(S), waiteS), setjmp(S).

Warning

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SrGCLD
SIGPWR

18 Death of a child (not reset when caught)
19 Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these signals
will continue to behave as described below; they are included only for
compatibility with other version~ of XENIX. Their use in new pro­
grams is strongly discouraged.

October 10, 1988 Page 3

SIGNAL (S) SIGNAL (S)

For these signals, Junc is assigned one of three values: SIG _ DFL,
SIG_IGN, or a Junction address. The actions prescribed by these
values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process' child processes will not create zombie
processes when they terminate; see exit(S).

Junction address - catch signal

Notes

If the signal is SIGPWR, the action to be taken is the same
as that described above for Junc equal to Junction
address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching
function any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wait(S), and exit (S» in
the following ways:

wait If the June value of SIGCLD is set to SIG _ IGN and a wait
is executed, the wait will block until all of the calling pro­
cess' child processes terminate; it will then return a value
of -1 with errno set to EeHll..D.

exit If in the exiting process' parent process the June value of
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may
be piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

The defined constant NSIG in signal.h standing for the number of sig­
nals is always at least one greater than. the actual number.

The ca11ine pr01:'~SS !!!1.!£t !:!!::±e ~~t:h.~:::- ~:::.!! ~v :;igiiiif a.ft~a d :si.~mti i:s
caught before another signal can be caught. If this is not done, subse­
quent signals are processed in the default manner (see the description
for SIG _ DFL).

Page 4 October 10, 1988

SIGSEM(S)

Name

sigsem - Signals a process waiting on a semaphore.

Syntax

int sigsem(sem num);
int sem _ num; -

Description

SIGSEM(S)

sigsem signals a process that is waiting on the semaphore sem _ num
that it may proceed and use the resource governed by the semaphore.
sigsem is used in conjunction with waitsem(S) to allow synchroniza­
tion of processes wishing to access a resource. One or more processes
may waitsem on the given semaphore and will be put to sleep until the
process which currently has access to the resource issues a sigsem
call. If there are any waiting processes, sigsem causes the process
which is next in line on the semaphore's queue to be rescheduled for
execution. The semaphore's queue is organized in first in first out
(FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

System Compatibility

sigsem can only be used to signal semaphores created under XENIX
Version 3.0, not for XENIX System V semaphores.

Diagnostics

sigsem returns the value (int) -1 if an error occurs. If sem num does
not refer to a semaphore type file, errno is set to ENOTNAM. If
sem _ num has not been previously opened by opensem, errno is set to
EBADF. If the process issuing a sigsem call is not the current
"owner" of the semaphore (i.e., if the process has not issued a
waitsem call before the sigsem), errno is set to ENAVAIL.

Notes

This feature is a XENIX specific enhancement and may not be present
in all UNIX implementations. This function must be linked using the
linker option -Ix.

October 10, 1988 Page 1

SINH (S)

Name

sinh, cosh, tanh - PeIforms hyperbolic functions.

Syntax

#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

Description

SINH (S)

These functions compute the designated hyperbolic functions for real
arguments.

Diagnostics

sinh and cosh return HUGE (and sinh may return -HUGE for nega­
tive x) when the correct value would overflow and set errno to
ERANGE.

These error-handling procedures can be changed with the matherr(S)
function.

See Also

matherr(S)

Notes

These routines must be linked by using the -1m linker option.

October 10, 1988 Page 1

SLEEP (S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

SLEEP (S)

The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may
be less than that requested because scheduled wakeups occur at fixed
I-second intervals, and any caught signal will terminate the sleep fol­
lowing execution of that signal's catching routine. Also, the suspen­
sion time may be longer than requested by an arbitrary amount due to
the scheduling of other activity in the system. The value returned by
sleep will be the "unslept" amount (the requested time minus the
time actually slept) in case the caller had an alarm set to go off earlier
than the end of the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the alarm
signal is saved and restored. The calling program may have set up an
alarm signal before calling sleep; if the sleep time exceeds the time
till such alarm signal, the process sleeps only until the alarm signal
would have occurred, and the caller's alarm catch routine is executed
just before the sleep routine returns,. but if the sleep time is less than
the time till such alarm, the prior alarm time is reset to go off at the
same time it would have gone off without the intervening sleep.

See Also

alarm(S), nap(S), pause(S), signal(S)

October 10, 1988 Page 1

SPUTL (S) SPUTL (S)

Name

sput!, sgetl - Accesses long integer data in a machine-independent
fashion.

Syntax

void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

Description

sputl takes the four bytes of the long integer value and places them in
memory starting at the address pointed to by buffer. The ordering of
the bytes is the same for all machines.

Starting at the address pointed to by buffer, sgetl retrieves the four
bytes in memory and returns the long integer value in the byte order­
ing of the host machine.

sputl and sgetl provide a machine-independent way to store long
numeric data in binary form in a file without converting to characters.

October 10, 1988 Page 1

SSIGNAL (S)

Name

ssignal, gsignal - Implements software signals.

Syntax

#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

Description

SSIGNAL (S)

ssignal and gsignal implement a software facility similar to signal (S).
This facility is used by the standard C library to enable the user to
indicate the disposition of error conditions, and is also made available
to the user for his own purposes.

Software signals made available to users are associated with integers
in the inclusive range 1 through 15. An action for a software signal is
established by a call to ssignal, and a software signal is raised by a
call to gsignal. Raising a software signal causes the action esta­
blished for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal
for which an action is to be established. The second argument defines
the action; it is either the name of a (user defined) action function or
one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore).
ssignal returns the action previously established for that signal type; if
no action has been established or the signal number is illegal, ssignal
returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG_DFL and the action function is entered
with argument sig. gsignal returns the value returned to it by
the action function.

If the action for sig is SIG_IGN , gsignal returns the value 1 and
takes no other action.

If the action for sig is SIG_DFL , gsignal returns the value 0 and
takes no other action.

October 10, 1988 Page 1

SSIGNAL (S) SSIGNAL (S)

Notes

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal numbers outside the range 1 through 15
are legal, although their use may interfere with the operation of the
standard C library.

Software signals may be sent and received only within the same pro­
cess. They cannot be used to signal other processes.

Page 2 October 10, 1988

STAT(S)

Name

stat, fstat - Gets file status.

Syntax

#include <sys/types.h>
#include <sys/stat.h>

int stat (path, but)
char *path;
stI-uct stat *buf;

int fstat (fildes, but)
int fildes;
struct stat *buf;

Description

STAT(S)

path points to a pathname naming a file. Read, write or execute per­
mission of the named file is not required, but all directories listed in
the pathname leading to the file must be searchable. stat obtains
infonnation about the named file.

Similarly,lstat obtains infonnation about an open file known by the
file descriptor lildes, obtained from a successful open, creat, dup,
Icntl, or pipe system call.

but is a pointer to a stat structure into which infonnation is placed
concerning the file.

The contents of the structure pointed to by bul include the following
members:

ushort
ino_t
dev_t

short
ushort
ushort
ofCt
time_t
time_t
time_t

scmode;
sCino;
sCdev;

scrdev;

scnlink;
scuid;
scgid;
sCsize;
sCatime;
scmtime;
sCctime;

October 10, 1988

/* File mode; see mknod(S) */
/* Inode number */
/* ID of device containing * /
/* a directory entry for this file */
/* ID of device */
/* This entry is defined only for */
/* special files */
/* Number of links */
/* User ill of the file's owner */
/* Group ill of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1,1970 */

Page 1

STAT(S) STAT(S)

st atime Time when file data was last accessed. Changed by the
following system calls: createS), mknod(S), pipe (S),
utime(S), and read(S).

st mtime Time when data was last modified. Changed by the fol­
lowing system calls: createS), mknod(S) , pipe (S),
utime (S), and write (S).

st ctime Time when file status was last changed. Changed by the
following system calls: chmod(S), chown(S), createS),
link (S), mknod(S), pipe (S), utime(S), and write (S).

st rdev Device identification. In the case of block and character
special files this contains the device major and minor
numbers; in the case of shared memory and semaphores, it
contains the type code. The file /usr/include/sys/types.h
contains the macros majorO and minorO for extracting
major and minor numbers from st rdev. See
/usr/include/sys/stat.h for the semaphore -and shared
memory type code values S __ INSEM and S_INSHD.

stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search pennission is denied for a component of the path prefix.
[EACCES]

buf or path points to an invalid address. [EFAULT]

fstat will fail if one or more of the following are true:

fildes is not a valid open file descriptor. [EBADF]

buf points to an invalid address. [EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and erma is set to indicate the error.

See Also

chmod(S), chown(S), createS), link(S), mknod(S), time(S), unlink(S)

Page 2 October 10, 1988

STATFS (S)

Name

statfs, fstatfs - get file system information

Syntax

#include <sys/types.h>
#include <sys/statfs.h>

int statfs (path, buf, len, fstyp)
char *path;
struct statfs *buf;
int len, fstyp;

int fstatfs (fildes, buf, len, fstyp)
int fildes;
struct statfs *buf;
int len, fstyp;

Description

STATFS (S)

statfs returns a "generic superblock" describing a file system. It can
be used to acquire information about mounted as well as unmounted
file systems, and usage is slightly different in the two cases. In all
cases, buf is a pointer to a structure (described below) which will be
filled by the system call, and len is the number of bytes of information
which the system should return in the structure. len must be no
greater than sizeof (struct statfs) and ordinarily it will contain exactly
that value; if it holds a smaller value the system will fill the structure
with that number of bytes. (This allows future versions of the system
to grow the structure without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a
file which resides on that file system. In this case the file system type
is known to the operating system and the fstyp argument must be zero.
Only native XENIX unmounted file systems are supported, and the
path must name the block special file containing the filesystem and
fstyp must contain the value 1. Software using values other than 1 may
not function correctly with future releases of XENIX. In both cases
read, write, or execute permission of the named file is not required,
but all directories listed in the path name leading to the file must be
searchable.

The statfs structure pointed to by buf includes the following members:

short
short
short
long
long

f_fstyp;
f_bsize;
f_frsize;
f_blocks;
f_bfree;

October 10, 1988

/* File system type */
/* Block size */
/* Fragment size */
/* Total number of blocks */
/* Count of free blocks */

Page 1

STATFS (S)

long
long
char
char

Cfiles;
Cffree;
Cfname[6];
Cfpack[6];

STATFS (S)

/* Total number of file nodes */
/* Count of free file nodes */
/* Volume name */
/* Pack name */

Jstatfs is similar, except that the file named by path in statfs is instead
identified by an open file descriptor Jiledes obtained from a successful
open(S), creat(S), dup(S),fcntl(S), or pipe(S) system call.

statfs obsoletes ustat(S) and should be used in preference to it in new
programs.

statfs andJstatfs will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the
path prefix.

[EFAULT] BuJ or path points to an invalid address.

[EBADF] Fildes is not a valid open file descriptor.

[EINV AL] Fstyp is an invalid file system type; path is not a
block special file and Jstyp is nonzero; len is nega­
tive or is greater than sizeof (struct statfs).

[ENOLINK] Path points to a remote machine, and the link to
that machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple
remote machines.

Diagnostics

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Alsu

dlffiOU~~), chown(S), creat(~), Imk(~), mknod(S), pipe(S), read(S),
time(S), unlink(S), utime(S), write(S), fs(F).

Page 2 October 10, 1988

STDIO (S) STDIO (S)

Name

stdio - Perfonns standard buffered input and output.

Syntax

#include <stdio.h>
FILE *stdin, *stdout, *stderr;

Description

The stdio library contains an efficient, user-level I/O buffering
scheme. The in-line macros gete (S) and pute (S) handle characters
quickly. The macros getehar, putehar, and the higher-level routines
jgete, jgets, /print!, /pute, /puts, jread, jseanj, fwrite, gets, getw,
print!, puts, putw, and seanj all use gete and pute; they can be freely
intennixed.

A file with associated buffering is called a "stream" and is declared
to be a pointer to a defined type Fll.,E . jopen(S) creates certain
descriptive dat(). for a stream and returns a pointer to designate the
stream in all further transactions. Nonnally, there are three open
streams with constant pointers declared in the "include" file and
associated with the standard open files:

stdin
stdout
stderr

Standard input file
Standard output file
Standard error file

A constant' 'pointer" NULL designates the null stream.

An integer constant EOF is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descrip­
tions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <stdio.h>

Most of the functions and constants mentioned in this section of the
manual are declared in that "include" file and are described else­
where. The constants and the following "functions" are implemented
as macros (redeclaration of these names is perilous): gete, getehar,
pute ,putehar ,jeoj,jerror , and fileno.

October 10, 1988 Page 1

STDIO (S) STDIO (S)

See Also

open(S), close(S), read(S), write(S), ctermid(S), cuserid(S), fclose(S),
ferror(S), fopen(S), fread(S), fseek(S), getc(S), gets(S), popen(S),
printf(S), putc(S), puts(S), scanf(S), setbuf(S), system(S), tmpnam(S)

Diagnostics

Invalid stream pointers can cause grave disorder, possibly including
program termination. Individual function descriptions describe the
possible error conditions.

Page 2 October 10, 1988

STDIPC (S)

Name

ftok - Standard interprocess communication package.

Syntax

#include <sys/types.h>
#include <sys/ipc.h>

key t ftok(path, id)
char *path;
char id;

Description

STDIPC (S)

All interprocess communication facilities require the user to supply a
key to be used by the msgget(S), semget(S), and shmget(S) system
calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the ftok subroutine described
below. Another way to compose keys is to include the process ID in
the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If
some standard is not adhered to, it will be possible for unrelated
processes to unintentionally interfere with each other's operation.
Therefore, it is strongly suggested that the most significant byte of a
key refer to a project so that keys do not conflict across a given sys­
tem.

ftok returns a key based on path and an id that is usable in subsequent
msgget, semget, and shmget system calls. path must be the path name
of an existing file that is accessible to the process. id is a character
which uniquely identifies a project. Note that ftok will return the
same key for linked files when called with the same id and that it will
return different keys when called with the same file name but with dif­
ferent ids.

See Also

intro(S), msgget(S), semget(S), shmget(S)

Diagnostics

ftok returns (key t) -1 if path does not exist or if it is not accessible to
the process. -

October 10, 1988 Page 1

STDIPC(S) STDIPC (S)

Warning

If the file whose path is passed to ftok is removed when keys still refer
to the file, future calls to ftok with the same path and id will return an
error. If the same file is recreated, then ftok is likely to return a dif­
ferent key than it did the original time it was called.

Page 2 October 10, 1988

STIME (S)

Name

stime - Sets the time.

Syntax

#include <sys/types.h>
#include <sys/timeb.h>

int stime (tp)
long *tp;

Description

STIME (S)

stime sets the system's idea of the time and date. tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1,
1970.

stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

time(S)

October 10, 1988 Page 1

STRING (S) STRING (S)

Name

string, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok, strdup - Performs string opera­
tions.

Syntax

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (sl, s2, n)
char *sl, *s2;
int n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (s1, s2, n)
char *s1, *s2;
int n;

char *strcpy (s1, s2)
char *s1, *s2;

char *strncpy (s1, s2, n)
char *sl, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr (s, c)
char *s;
int c;

char *strpbrk (s1, s2)
char *s1, *s2;

int strspn (sl, s2)
char *sl, *s2;

int strcspn (sl, s2)
char *s1, *s2;

October 10, 1988 Page 1

STRING (S)

char *strtok (sl, s2)
char *sl, *s2;

char *strdup (s)
char *8;

Description

STRING (S)

These functions operate on null-terminated strings. They do not check
for overflow of any receiving string.

strcat appends a copy of string s2 to the end of string sl. strncat
copies at most n characters. Both return a pointer to the null­
terminated result.

strcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, according to whether sl is lexicographically
greater than, equal to, or less than s2. strncmp makes the same com­
parison but looks at no more than n characters.

strcpy copies string s2 to sl , stopping after the null character has been
moved. strncpy copies exactly n characters, truncating or null­
padding s2; the target may not be null-terminated if the length of s2 is
n or more. Both return sl .

strlen returns the number of non-null characters in s.

strchr (strrchr) returns a pointer to the first (last) occurrence of char­
acter c in string s, or NULL if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string sl of any
character from string s2, or NULL if no character from s2 exists in sl .

strspn (strcspn) returns the length of the initial segment of string sl
which consists entirely of characters from (not from) string s2.

strtok considers the string sl to consist of a sequence of zero or more
text tokens separated by spans of one or more characters from the
separator string s2. The first call (with pointer sl specified) returns a
pointer to the first character of the first token, and will have written a
NlJLL character into sl itTlluediately following the returned token.
Subsequent calls cast as type char, with NULL for the fIrst argument,
w~ll wVlk uuough i.ht:: String sl in this way until no tokens remain.
The separator string s2 may be different from call to call. When no
token remains in sl , a NULL is returned.

strdup returns a pointer to a duplicate copy of the string pointed to by
s. The duplicate string is automatically allocated storage using a
malloc (S) system call. This call allocates the exact number of bytes
needed to store the string and its terminating null character.

Page 2 October 10, 1988

STRING (S) STRING (S)

Notes

For user convenience, all the string functions are declared in the
<string.h> header file.

strcmp uses native character comparison, which is signed on some
machines, unsigned on others. Thus, when one of the characters has
its high-order bit set, the sign of the value returned is
implementation-dependent.

All string movement is performed character by character starting at
the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

October 10, 1988 Page 3

STRTOD (S) STRTOD (S)

Name

strtod, atof - Converts a string to a double-precision number.

Syntax

double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

Description

strtod returns as a double-precision floating point number the value
represented by the character string pointed to by str. The string is
scanned up to the first unrecognized character.

strtod recognizes an optional string of "white-space" characters (as
defined by isspace in ctype (S», then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E
followed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)0, a pointer to the character terminat­
ing the scan is returned in the location pointed to by ptr. If no number
can be formed, *ptr is set to str, and zero is returned.

atof(str) is equivalent to strtod(str, (char * *)0) .

See Also

ctype(S), scanf(S), strtol(S)

Diagnostics

If the correct value would cause overflow, ±HUGE is returned
(according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno
is set to ERANGE.

October 10, 1988 Page 1

STRTOL (S)

Name

strtol, atol, atoi - Converts string to integer.

Syntax

long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

Description

STRTOL (S)

strtol returns as a long integer the value represented by the character
string pointed to by str. This routine scans the string up to the first
character inconsistent with the base. It ignores leading white space
characters as defined by isspace (see ctype (S)).

If the value of ptr is not (char **)0, strtol returns a pointer to the char­
acter terminating the scan at the location pointed to by ptr. If no
integer can be formed, that location is set to str, and strtol returns
zero.

base is used as the base for conversion if it is positive and not greater
than 36. If base is 16, leading zeros are ignored after an optional lead­
ing sign, and "Ox" or "OX" is ignored. If base is zero, the string
determines the base in the following manner: a leading zero indicates
octal conversion after an optional leading sign; a leading "Ox" or
"OX" indicates hexadecimal conversion; in other cases, decimal
conversion is used.

Truncation from long to int can take place upon assignment or by
explicit cast.

atol(str) is equivalent to strtol(str, (char**)O, 10).

atoi(str) is equivalent to (int) strtol(str, (char**)O, 10).

October 10, 1988 Page 1

STRTOL (S)

See Also

ctype(S), scanf(S), strtod(S)

Notes

Overflow conditions are ignored.

Page 2

STRTOL (S)

October 10, 1988

SWAB (S)

Name

swab - Swaps bytes.

Syntax

void swab (from, to, nbytes)
char *from, *to;
int nbytes;

Description

SWAB (S)

swab copies nbytes pointed to by from to the position pointed to by to,
exchanging adjacent even and odd bytes. It is useful for transporting
binary data between machines that differ in the ordering of bytes.
nbytes should be even.

October 10, 1988 Page 1

SWAPADD(S) SWAPADD (S)

Name

swapadd - Specifies additional devices for paging and swapping.

Description

This command is available only in XENIX-386. If you have XENIX-
386, see your Release Notes for the complete version of this reference
page.

October 10, 1988 Page 1

SYNC(S) SYNC (S)

Name

sync - Updates the super-block.

Syntax

void sync ()

Description

sync causes all infonnation in memory that should be on disk to be
written out. This includes modified super-blocks, modified inodes,
and delayed block I/O.

It should be used by programs which examine a file system, for exam­
pIe fsck, df, etc.

The writing, although scheduled, is not necessarily complete upon
return from sync.

See Also

sync (ADM)

October 10, 1988 Page 1

SYSI86 (S)

Name

sysi86 - machine specific functions

Syntax

#include <sys/sysi86.h>

int sysi86(cmd, arg);
int cmd;
char *arg;

int sysi86(cmd, arg);
int cmd;
int arg;

int sysi86(cmd, arg);
int cmd;
long arg;

long sysi86(cmd)
int cmd;

Description

SYSI86 (S)

The sysi86 system call implements machine specific functions. The
emd argument detennines the function to be perfonned. The types of
the arguments expected depend on the function.

Command RTODC (80286 only)
When emd is RTODC , the expected argument is the address of a
struet bed tm:

struct bcd_tm {
unsigned char uniCsec, ten_sec,
uniCmin, ten_min, unit_hr, ten_hr,
uniCday, ten_day, unicmon, ten_mon,
unicyr, ten_yr, llyr;
} ;

This function reads the hardware time of day clock and returns the
data in the structure referenced by the argument. This command is
available only to the super-user.

Command SI86FPHW
This command expects the address of an integer as its argument.
After successful return from the system call, the integer specifies
how floating-point computation is supported.

October 10, 1988 Page 1

SYSI86 (S) SYSI86 (S)

The low-order byte of the integer contains the value of "fpkind", a
variable that specifies whether an 80287 or 80387 floating-point
coprocessor is present, emulated in software, or not supported.
The values are defined in the header file sys/fp.h.

FP_NO
FP_SW
FP_HW
FP_287
FP_387

no fp chip, no emulator (no fp support)
no fp chip, using software emulator
chip present bit
80287 chip present
80387 chip present

(80386 only) The second byte of the integer contains the value of
weitek _kind , a variable that specifies whether a Weitek floating­
point coprocessor is present, emulated or not supported. The
values are defined in the header file sys/weitek.h .

WElTEK_NO
WElTEK_HW
WElTEK_SW

no chip support
chip present
emulator present

Command SETNAME
This command, which is only available to the super-user expects
an argument of type char * which points to a NULL terminated
string of at most 7 characters. The command will change the run­
ning system's sysname and nodename [see uname (S)] to this
string.

Command STIME
When cmd is STIME , an argument of type long is expected. This
function sets the system time and date. The argument contains the
time as measured in seconds from 00:00:00 GMT January 1, 1970.
Note that this command is only available to the super-user.

Command SI86DSCR

Page 2

This command sets a segment or gate descriptor in the kernel. The
following descriptor types are accepted:

• executable and data segments in the LDT at DPL 3
• a call gate in the GDT at DPL 3 that points to a
segment in the LDT

The argument is a pointer to a request structure that contains the
values to be placed in the descriptor. The request structure is
declared in the sys/sysi86.h header file.

October 10, 1988

SYSI86 (S) SYSI86 (S)

Command SI86MEM
This command returns the size of available memory in bytes.

Command SI86SWPI

Note

This cmd is available only with System V Releases 2.1 and 3.0
software.

When cmd is SI86SWPI, individual swapping areas may be added,
deleted or the current areas determined. The address of an
appropriately primed swap buffer is passed as the only argument.
(Refer to sys/swap.h header file for details of loading the buffer.)

The format of the swap buffer is:

struct swapint {
char ~l_cmd; /* command: list, add, delete */
char *sLbuf; /*swap file path pointer */
long si_swplo; /* start block */
long si_nblks; /* swap size */
long sLblksiz; /* the blocksize (in bytes) of the swap file */

} ;

Note that the add and delete options of the command may only be
exercised by the super-user.

Typically, a swap area is added by a single call to sysi86 . First, the
swap buffer is primed with appropriate entries for the structure
members. Then sysi86 is invoked.

#include <sys/sysi86.h>
#include <sys/swap.h>

struct swapint swapbuf; /*swap into buffer ptr */

sysi86(SI86SWPI, &swapbuf);

October 10, 1988 Page 3

SYSI86 (S) SYSI86 (S)

If this command succeeds, it returns 0 to the calling process. This
command fails, returning -1, if one or more of the following is true:

See Also

[EFAULT]
[EFAULT]
[ENOTBLK]
[EEXIST]
[ENOSPC]
[ENOMEM]
[EINVAL]
[ENOMEM]

unarne(S), swap(S)

Diagnostics

Swapbuj points to an invalid address
Swapbu/.si _but points to an invalid address
Swap area specified is not a block special device
Swap area specified has already been added
Too many swap areas in use (if adding)
Tried to delete last remaining swap area
Bad arguments
NQ place to put swapped pages
when deleting a swap area

Upon successful completion, the value of zero is returned; otherwise,
-1 is returned, and errno is set to indicate the error. When the cmd is
invalid, errno is set to EINV AL .

Page 4 October 10, 1988

SYSTEM (S)

Name

system - Executes a shell command.

Syntax

#include <stdio.h>

int system (string)
char *string;

Description

SYSTEM (S)

system causes the string to be given to sh(C) as input as if the string
had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell.

Return Value

Errors, such as syntax errors, cause a non-zero return value and execu­
tion of the command file is abandoned. 'Otherwise, the exit status of
the last command executed is returned.

See Also

sh(C), exec(S)

Diagnostics

system returns wait status value OX7FOO (hex) if it is unable to exe­
cute sh(C).

October 10, 1988 Page 1

TERMCAP (S) TERMCAP (S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - Performs terminal
functions.

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

int tgetent(bp, name)
char *bp, *name;

int tgetnum(id)
char *id;

int tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;
int destcol, destline;

void tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)O;

Description

These functions extract and use capabilities from the terminal capabil­
ity data base termcap(F). These are low level routines; see curses(S)
for a higher level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp
should be a character buffer of size 1024 and must be retained through
all subsequent calls to tgetnum, tgetfiag, and tgetstr. tgetent returns -1
if it cannot open the termcap file, ° if the terminal name given does
not have an entry, and 1 if all goes well. It looks in the environment
for a TERMCAP variable. If found, and the value does not begin with
a slash, and the terminal type name is the same as the environment
string TERM, the TERMCAP string is used instead of reading the
termcap file. If it does begin with a slash, the string is used as a

October 10, 1988 Page 1

TERMCAP (S) TERMCAP (S)

patbname rather than /ete/termeap. This can speed up entry into pro­
grams that call tgetent, as well as to help debug new tenninal descrip­
tions or to make one for your terminal if you can't write the file
/ete/termeap.

tgetnum gets the numeric value of capability id, returning -1 if it is not
given for the terminal. tgetflag returns 1 if the specified capability is
present in the terminal's entry, ° if it is not. tgetstr returns the string
value of capability id, advancing the area pointer. It decodes the
abbreviations for this field described in termcap (F), except for cursor
addressing and padding infonnation.

tgata returns a cursor addressing string decoded from cm to go to
column destcal in line destline. It uses the external variables UP (from
the up capability) and BC (if be is given rather than bs) if necessary
to avoid placing \n, Ctrl-D or NULL in the returned string. Programs
which call tgata should be sure to turn off the TAB3 bit (see tty (M»,
since tgata may now output a tab. Note that programs using termcap
should turn off TAB3 anyway since some terminals use Ctrl-I for
other functions, such as nondestructive space.) If a % sequence is
given which is not understood, then tgata returns OOPS.

tputs decodes the leading padding information of the string cp; affcnt
gives the number of lines affected by the operation, or 1 if this is not
applicable, autc is a routine which is called with each character in
turn. The external variable as peed should contain the output speed of
the terminal as encoded by stty (S). The external variable PC should
contain a pad character to be used (from the pc capability) if a NULL
is inappropriate.

Files

/usr/lib/libtermcap.a -ltermcap library
/etc/termcap data base

See Also

curses(S), termcap(M), tty(M)

Page 2 October 10, 1988

TERMCAP (S) TERMCAP (S)

Credit

This utility was developed at the University of California at
Berkeley and is used with pennission.

Notes

These routines can be linked by using the -ltermcap linker option.

October 10, 1988 Page 3

TERMINFO (S)

Name

term info - terminal description database.

Syntax

#include <curses.h>
#include <term.h>

TERMINFO (S)

cc -DM_TERMINFO [-DMINICURSES] ... -ltinfo [-Ix]

Description

These routines give the user a method of updating screens with rea­
sonable optimization. In order to initialize the routines, the routine
initscr must be called before any of the other routines that deal with
windows and screens are used. The routine endwin should be called
before exiting. To get character-at-a-time input without echoing,
(most interactive, screen oriented-programs want this) after calling
initscr you should call "nonl(); cbreak(); noecho();"

The full curses interface permits manipulation of data structures
called windows which can be thought of as two dimensional arrays of
characters representing all or part of a CRT screen. A default window
called stdscr is supplied, and others can be created with newwin.
Windows are referred to by variables declared "WINDOW *", the
type WINDOW is defined in curses.h to be a C structure. These data
structures are manipulated with functions described below, among
which the most basic are move, and addch. (More general versions of
these functions are included with names beginning with 'w', allowing
you to specify a window. The routines not beginning with 'w' affect
stdscr.) Then refresh() is called, telling the routines to make the
users CRT screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation
of more than one window. To invoke this subset, use -DMINICURSES
as a cc option. Mini-Curses is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in the
standard place. For example, if the standard place is
lusr/lib/terminfo, and TERM is set to "vt100", then normally the
compiled file is found in lusrllib/terminfol v/vtlOO. (The "v" is
copied from the first letter of "vt100" to avoid creation of huge direc­
tories.) However, if TERMINFO is set to lusr/mark/myterms, curses
will first check lusr/mark/myterms/v/vtlOO, and if that fails, will
then check lusr/lib/terminfo/v/vtlOO. This is useful for developing
experimental definitions or when write permission in
lusr/lib/terminfo is not available.

October 10, 1988 Page 1

TERMINFO (S) TERMINFO (S)

See Also

terminfo(F), terminfo(M)

Functions

Routines listed here may be called when using the full curses. Those
marked with an asterisk may be called when using Mini-Curses.

addch(ch)*

addstr(str)*
attroff(attrs)*
attron(attrs)*
attrset(attrs)*
baudrate()*
beep()*
box(win, vert, hor)

clear()
clearok(win, bf)
clrtobot()
clrtoeol()
cbreak()*
delay _output(ms)*
delch()
deleteln()
delwin(win)
doupdate()
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has_i1()
idiok{win, Dt)'"
inch()
initscr()*
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)
killchar()

Page 2

add a character to stdscr (like putchar)
(wraps to next line at end of line)
calls addch with each character in str
tum off attributes named
tum on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of box
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode
insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnoutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminai can do insert character
true if terminal can do insert line
use terminal's insert/delete line ifbf!= 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character

October 10, 1988

TERMINFO (S)

leaveok(win, flag)

longname()
meta(win, flag)*
move(y, x)*
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol,

newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, frnt, args)
mvscanw(y, x, frnt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x,

frnt, args)
mvwscanw(win, y, x,

frnt, args)
newpad(nlines, ncols)
newterm(type, fd)

newwin(liIies, cols,
begin_y, begin_x)

nl()*
nocbreak()*
nodelay(win, bi)
noecho()*
nonl()*
noraw()*
overlay(winI, win2)
overwrite(winI, win2)
pnoutrefresh(pad,

pminrow, pmincol,
sminrow, smincol,
smaxrow, smaxcol)

printw(fmt, argI, arg2, ...)
raw()*
refresh()*
resetterm()*

October 10, 1988

TERMINFO (S)

OK to leave cursor anywhere after
refresh if flag!=O for win, otherwise cursor
must be left at current position.
return verbose name of terminal
8110w meta characters on input if flag != 0
move to (y, x) on stdscr
move(y, x) then addch(ch)
similar ...
low level cursor motion

like delch, but move(y, x) first
etc.

create a new pad with given dimensions
set up new terminal of given type to
output on fd
create a new window

set newline mapping
unset cbreak mode
enable nodelay input mode through getch
unset echo mode
unset newline mapping
unset raw mode
overlay wini on win2
overwrite wini on top of win2
like prefresh but with no output until
doupdate called prefresh(pad, pminrow,
pmincol, sminrow, smincol, smaxrow,
smaxcol) refresh from pad starting with
given upper left comer of pad with
output to given portion of screen
printf on stdscr
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state

Page 3

TERMINFO (S)

resetty()*
savetenn()*
savetty()*
scanw(fint, argl, arg2, ...)
scroll(win)
scrollok(win, flag)
seCtenn(new)
setscrreg(t, b)
settenn(type)
setuptenn(tenn, filenum,

emet)
standend()*
standout()*
subwin(win, lines, cols,

begin_y, begin_x)
touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fint, argl,

arg2, ...)
wrefresh(win)
wscanw(win, fint, argl,

arg2, ...)
wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

Page 4

TERMINFO (S)

reset tty flags to stored value
save current modes as "in curses" state
store current tty flags
scanf through stdscr
scroll win one line
allow tenninal to scroll if flag !=O
now talk to tenninal new
set user scrolling region to lines t through b
establish tenninal with given type

clear standout mode attribute
set standout mode attribute
create a subwindow

change all of win
tum off debugging trace output
tum on debugging trace output
use file descriptor fd to check typeahead
printable version of ch
add char to win
add string to win
tum off attrs in win
tum on attrs in win
set attrs in win to attrs
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y, x) in win
insert char into win
insert line into win
set current (y, x) co-ordinates on win
refresh but no screen output
printf on win

make screen look like win
scanf through win

set scrolling region of win
clear standout attribute in- win
set standout attribute in win

October 10, 1988

TERMINFO (S) TERMINFO (S)

Terminfo Level Routines

These routines should be called by programs wishing to deal directly
with the tenninfo database. Due to the low level of this interface, it is
discouraged. Initially, setupterm should be called. This will defme
the set of tenninal dependent variables defined in terminfo(M). The
include files curses.h and term.h should be included to get the defini­
tions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm to instantiate them. All tenninfo
strings (including the output of tparm) should be printed with tputs or
putp. Before exiting, resetterm should be called to restore the tty
modes. (Programs desiring shell escapes can call resetterm before the
shell is called andfixterm after returning from the shell.)

fixtenn()

resettenn()
setuptenn(tenn, fd, rc)

tpann(str, pI, p2, ... , p9)
tputs(str, affcnt, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

restore tty modes for tenninfo use (called by
setuptenn)
reset tty modes to state before program entry
read in database. Tenninal type is the
character string term, all output is to UNIX
System file descriptor fd. A status value
is returned in the integer pointed to
by rc: 1 is nonnal. The simplest call would be
setupterm(O, 1,0) which uses all defaults.
instantiate string str with parms p ..
apply padding info to string str. d!fent is
the number of lines affected, or I if not
applicable. Pute is a putchar-like
function to which the characters are passed,
one at a time. Note that the user must
supply their own pute function.
handy function that calls tputs
(str, 1, putchar)
output the string to put tenninal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like function pute.
Standard putehar can be used here or the
user can supply their own pute function.
Like vidputs but outputs through putchar

Termcap Compatibility Routines

These routines were included as a conversion aid for programs that
use termeap(S). Their parameters are the same as used in termcap.
They are emulated using the terminfo(M) database. They may be
removed at a later date.

tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)

October 10, 1988

look up tenncap entry for name
get boolean entry for id
get numeric entry for id
get string entry for id

Page 5

TERMINFO (S) TERMINFO (S)

tgoto(cap, col, row)
tputs(cap, affcnt, fn)

apply parms to given cap
apply padding to cap calling fn as
putchar

Attributes

The following video attributes can be passed to the functions
attron ,attrojf,attrset .

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM

Tenninal's best highlighting mode
Underlining

A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Function Keys

Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

The following function keys might be returned by getch if keypad has
been enabled. Note that not all of these are currently supported, due
to lack of definitions in terminfo or the tenninal not transmitting a
unique code when the key is pressed.

Name Value
KEY_BREAK 0401
KEY_DOWN 0402
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405

Key name
break key (unreliable)
The four arrow keys ...

KEY_HOME 0406 Home key (upward+left arrow)
KEY_BACKSPACE 0407 backspace (unreliable)
KEY _FO 0410 Function keys. Space for 64 is reserved.
KEY _F(n) (KEY _FO+(n» Formula for fn.
KEY_DL 0510 Delete line
KEY _IL 0511 Insert line
KEY_DC 0512 Delete character
KEY _IC 0513 Insert char or enter insert mode

KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB

Page 6

0514
0515
Ujlo
0517
0520
0521
0522
0523
0524
0525

Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
S~t tab
Clear tab

October 10, 1988

TERMINFO (S)

KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

October 10, 1988

0526
0527
0530
0531
0532
0533

TERMINFO (S)

Clear all tabs
Enter or send (unreliable)
soft (partial) reset (unreliable)
reset or hard reset (unreliable)
print or copy
home down or bottom (lower left)

Page 7

TIME(S)

Name

time, ftime - Gets time and date.

Syntax

long time «(long *) 0)

long time (t1oc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>

void ftime(tp)
struct timeb *tp;

Description

TIME(S)

time returns the current system time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also stored
in the location to which tloc points.

[time returns the time in a structure (see below under Return Value.)

time will fail if tloc points to an illegal address. [EFAULT] Likewise,
[time will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, time returns the value of time. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

October 10, 1988 Page 1

TIME (S) TIME(S)

The ftime entry fills in a structure pointed to by its argument, as
defined by <sys/timeb.h>:

/*
* Structure returned by ftime system call
*/
struct timeb {

long time;

} ;

unsigned short millitm;
short timezone;
short dstflag;

Note that the timezone value is a system default time zone and not the
value of the TZ environment variable.

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more-precise interval, the local time zone (measured
in minutes of time westward from Greenwich), and a flag that, if
nonzero, indicates that Daylighf Saving time applies locally during
the appropriate part of the year.

See Also

date(C), stime(S), ctime(S)

Notes

Since ftime does not return the correct timezone value, its use is not
recommended. See ctime (S) for accurate use of the TZ variable.

Page 2 October 10, 1988

TIMES (S)

Name

times - Gets process and child process times.

Syntax

#include <sys/types.h>
#include <sys/times.h>

long times(tp)
struct tms *tp;

Description

TIMES (S)

times fills the structure pointed to by tp with time-accounting infor­
mation. This information comes from the calling process and each of
its terminated child processes for which it has executed a waiteS).

All times are in clock ticks where a tick is some fraction of a second
defined in machine (M).

tms _ utime is the CPU time used while executing instructions in the
user space of the calling process.

tms _stime is the CPU time used by the system on behalf of the calling
process.

tms cutime is the sum of the utime s and cutime s of the child
processes.

tms _ cstime is the sum of the stime s and cstime s of the child processes.

times will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This point does not change from one invocation of
times to another. If times fails, a -1 is returned and errno is set to
indicate the error.

See Also

exec(S), fork(S), time(S), waiteS), machine(M)

October 10, 1988 Page 1

TMPFILE(S) TMPFILE(S)

Name

tmpfile - Creates a temporary file.

Syntax

#include <stdio.h>

FILE *tmpfile ()

Description

tmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically be
deleted when the process using it terminates. The file is opened for
update.

Return Value

If the file cannot be opened, an error message is printed and a NULL
pointer is returned.

See Also

createS), unlink(S), fopen(S), mktemp(S), tmpnam(S)

October 10, 1988 Page 1

TMPNAM(S)

Name

tmpnam, tempnam - Creates a name for a temporary file.

Syntax

#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

Description

TMPNAM(S)

These functions generate filenames that can safely be used for a tem­
porary file.

tmpnam always generates a filename using the path-prefix defined as
P _ tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves
its result in an internal static area and returns a pointer to that area.
The next call to tmpnam will destroy the contents of the area. If s is
not NULL, it is assumed to be the address of an array of at least
L _ tmpnam bytes, where L _ tmpnam is a constant defined in
<stdio.h>; tmpnam places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The
argument dir points to the name of the directory in which the file is to
be created. If dir is NULL or points to a string which is not a name for
an appropriate directory, the path-prefix defined as P _ tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, Itmp
will be used as a last resort. This entire sequence can be up-staged by
providing an environment variable TMPDIR in the user's environ­
ment, whose value is the name of the desired temporary file directory.

Many applications prefer their temporary files to have certain favorite
initial letter sequences in their names. Use the pfx argument for this.
This argument may be NULL or point to a string of up to five charac­
ters to be used as the first few characters of the temporary filename.

tempnam uses maUoe (S) to get space for the constructed filename,
and returns a pointer to this area. Thus, any pointer value returned
from tempnam may serve as an argument to free(S) (see maUoe(S)).
If tempnam cannot return the expected result for any reason, i.e.,
maUoe(S) failed, or none of the above mentioned attempts to find an
appropriate directory was successful, a NULL pointer will be returned.

October 10, 1988 Page 1

TMPNAM(S) TMPNAM(S)

See Also

createS), fopen(S), malloc(S), rnktemp(S), tmpfile(S), unlink(S)

Notes

These functions generate a different file name each time they are
called.

Files created using these functions and either jopen(S) or createS) are
temporary only in the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user's responsibil­
ity to use unlink(S) to remove the file when its use is ended.

If called more than 17,576 times in a single process, these functions
will start recycling previously used names.

Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same name.
This can never happen if that other process is using these functions or
mktemp (S), and the filenames are chosen to make duplication by other
means unlikely.

Page 2 October 10, 1988

TRIG (S) TRIG (S)

Name

sin, cos, tan, asin, acos, atan, atan2 - Performs trigonometric functions.

Syntax

#include <math.h>

double sin (x)
double X;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;

Description

sin, cos and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to
make sure the result is meaningful.

asin returns the arc sin in the range -n12 to n12.

acos returns the arc cosine in the range ° to n.

atan returns the arc tangent of x in the range -n12 to n12.

atan2 returns the arc tangent of y Ix in the range -n to n.

See Also

matherr(S)

October 10, 1988 Page 1

TRIG (S) TRIG (S)

Diagnostics

sin, cos, and tan lose accuracy when their argument is far from zero.
For arguments sufficiently large, these functions return zero when
there would otherwise be a complete loss of significance. In this case,
a message indicating a TLOSS error is displayed on the standard error
output. For less extreme arguments causing partial loss of signifi­
cance' a PLOSS error is generated but no error message is displayed.
In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or
if both arguments of atan2 are zero, zero is returned and errno is set to
EDaM. In addition, a message indicating a DOMAIN error is
displayed on the standard error output.

These error-handling procedures may be changed with the matther(S)
function.

Notes

These routines must be linked with the -1m linker option.

Page 2 October 10, 1988

TSEARCH(S) TSEARCH(S)

Name

tsearch, tfmd, tdelete, twalk - Manages binary search trees.

Syntax

#include <search.h>

char *tsearch (key, rootp, compar)
char *key;
char **rootp;
int (*compar)();

char *tfind (key, rootp, compar)
char *key;
char **rootp;
int (*compar)();

char *tdelete (key, rootp, compar)
char *key;
char **rootp;
int (*compar)();

char *twalk (root, action)
char *root;
void *action();

Description

The routines tsearch, tfind, tdelete, and !Walk manipulate binary
search trees. They are generalized from Knuth (6.2.2) Algorithms T
and D. All comparisons are done with a user-supplied routine. This
routine is called with two arguments, the pointers to each of the ele­
ments being compared. An integer is returned less than, equal to, or
greater than 0, corresponding to whether the fIrst argument is con­
sidered less than, equal to, or greater than the second argument. The
comparison function need not compare every byte, so other data may
be contained in the elements in addition to the compared values.

tsearch is used to build and access the tree. key is a pointer to a datum
to be accessed or stored. If there is a datum in the tree equal to the
value pointed to by key (*key), a pointer to this datum is returned.
Otherwise, *key is inserted, and a pointer to it returned. The calling
routine must store data, since only pointers are copied. rootp points to
a variable that points to the root of the tree. A NULL value for this
variable means an empty tree; in this case, this variable will be set to
point to the datum at the root of the new tree.

October 10, 1988 Page 1

TSEARCH(S) TSEARCH(S)

tfind will search for a datum in the tree, returning a pointer to it if
found; however, if the datum is not found, tfind will return a NULL
pointer. The arguments for tfind are the same as for tsearch .

tdelete deletes a node from a binary search tree. The arguments are
the same as for tsearch. The variable pointed to by rootp is changed if
the deleted node was the root of the tree. tdelete returns a pointer to
the parent of the deleted node, or a NULL pointer if the node is not
found.

!Walk traverses a binary search tree. root is the root of the tree to be
traversed. Any node in a tree may be used as the root for a walk
below that node. action is the name of a routine to be invoked at each
node. action is called with three arguments:

- the address of the node being visited.

- a value from an enumeration data type typedef enum {
preorder, post- order, endorder, leaf} VISIT; depending on
whether this is the fIrst, second, or third time that the node has
been visited, or whether the node is a leaf. (This data type is
defmed in the <search.h> header fIle.)

- the level of the node in the tree, with the root being level zero ..

The pointers to the key and the root of the binary search tree should be
of type pointer-to-element, and cast to type pointer-to-character. The
value returned should also be cast into type pointer-to-element,
although it is declared as tyre pointer-to-character.

See Also

bsearch(S),hsearch(S),lsearch(S)

Examples

The following code fragment reads in strings and stores structures
containing a pointer to each string and a count of its length. It then
walks the tree, printing out the stored strings and their length in alpha­
betical order:

Page 2

#include <search.h>
#include <stdio.h>

struct node { /*pointers to these are stored in the tree*/
char *string;
int length;

} ;
char string_space[10000]; /*space to store strings*/
struct node nodes[500]; /*nodes to store*/

October 10, 1988

TSEARCH (S) TSEARCH (S)

struct node *root = NULL; /*this points to NULL*/

main ()
{

}
/*

*/
int

char *strptr = strin~space;
struct node *nodeptr = nodes;
void prinCnode (), twalk();
init i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500)
/*set node*/

}

nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
/*put node into the tree * /
(void) tsearch «char *)nodeptr, &root,

node_compare);
/*adjust pointers, so we don't overwrite tree*/
strptr += nodeptr->length + 1;
nodeptr++;

twalk(root, princnode);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
struct node *node 1, *node2;
{

}
/*

return strcmp(nodel->string, node2->string);

This routine prints out a node, the first time
twalk encounters it.

*/
void
princnode(node, order, level)
struct node **node;
VISIT order;
int level;
{

if (order == preorder II order ==leaf) {
(void)printf("string = %20s, length = %d\n",

(*node)->string, (*node)->length);

October 10,1988 Page 3

TSEARCH(S) TSEARCH(S)

Diagnostics

A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if rootp is
NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it. If
not, tfind returns NULL, and tsearch returns a pointer to the inserted
item.

Warning

The root argument to twalk is one level of indirection less than the
rootp arguments to tsearch and tdelete .

There are two nomenclatures used to refer to the order in which tree
nodes are visited. tsearch uses preorder, postorder, and endorder to
respectively refer to visiting a node before any of its children, after its
left child and before its right, and after both children. The other
nomenclatures uses preorder, inorder, and postorder to refer to the
same visits.

Notes

If the calling function alters the pointer to the root, results can not be
predicted.

Page 4 October 10, 1988

ITYNAME(S)

Name

ttyname, isatty - Finds the name of a terminal.

Syntax

char *ttyname (tildes)

int isatty (tildes)
int tildes;

Description

ITYNAME (S)

ttyname returns a pointer to the null-terminated pathname of the ter­
minal device associated with file descriptor iildes .

isatty returns 1 if iildes is associated with aaterminal device, ° other­
wise.

Files

/dev/*

Diagnostics

ttyname returns a null pointer (0) if iildes does not describe a terminal
device in directory Idev.

Notes

The return value points to static data whose content is overwritten by
each call.

October 10, 1988 Page 1

ITYSLOT(S) ITYSLOT(S)

Name

ttyslot - Finds the slot in the utmp file of the current user.

Syntax

int ttyslot ()

Description

ttyslot returns the index of the current user's entry in the /etc/utmp
file.

Files

/etc/utmp

See Also

getut(S), ttyname(S), utmp(F).

Diagnostics

A value of 0 is returned if an error was encountered while searching
for the terminal name or if none of the above file descriptors is associ­
ated with a terminal device.

October 10, 1988 Page 1

UADMIN(S) UADMIN(S)

Name

uadmin - Administrative control for rebooting the system and
remounting the root filesystem.

Syntax

#include <sys/uadmin.h>

int uadmin (cmd, fcn, mdep)
int cmd, fcn;
char *mdep;

Description

The uadmin call provides control for two basic system functions:
rebooting the system and remounting the root filesystem. This system
call is tightly coupled to the system administrative procedures and is
not intended for general use.

The commands available as specified by cmd are:

A_SHUTDOWN
The system is shut down. All user processes are killed, the
buffer cache is flushed, and the root file system is unmounted.
The action to be taken after the system is shut down is specified
by fcn. If mdep is non-null, then it points to a superblock to be
written to the disk.

Values offcn for this cmd are:

AD_HALT

AD_BOOT

AD_IBOOT
name.

A_REBOOT

Halt the processor.

Reboot the system.

Interactive reboot, prompt for system

The system stops immediately without any further processing.
The action to be taken next is specified by fcn as above.

A_REMOUNT
The buffer cache is invalidated and the superblock is read in
again. This should only be used during the startup process.

A_SETCONFIG
Some internal systemwide kernel state as specified by fcn is set
to a value as specified by mdep.

October 10, 1988 Page 1

UADMIN(S)

See Also

Value offen for this emd is:

AD_BOOTPANIC Ifmdep is 1, system
panics cause the system
to reboot. If mdep is 0,
the system waits for a
keystroke.

haltsys(ADM), shutdown(ADM)

Diagnostics

UADMIN(S)

Upon successful completion, the value returned depends on emd as
follows:

A_SHUTDOWN
A_REBOOT
A_REMOUNT

Never returns.
Never returns.

°
Otherwise, a value of -1 is returned and errno is set to indicate the
error.

uadmin fails if the effective user ID is not super-user [EPERM].

Notes

AD_BOOT and AD_IBOOT do the same thing.

Page 2 October 10, 1988

ULIMIT(S)

Name

ulimit - Gets and sets user limits.

Syntax

#include <sys/ulimit.h>

long uUmit (cmd, newlimit)
int cmd;
long newlimit;

Description

ULIMIT(S)

This function provides for control over process limits. The cmd
values available are:

UL_GFILLIM (1)
Gets the process' file size limit. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can
be read.

UL_SFILLIM (2)
Sets the process' file size limit to the value of new limit . Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. If a pro­
cess with an effective user ID other than super-user attempts to
increase its file size limit, ulimit will fail and the limit will be
unchanged. [EPERM]

UL_GMEMLIM
Gets the maximum possible break value. If the process is a
large model 80286 program, then the largest possible data size
(in bytes) is returned. See sbrk(S).

UL GTXTOFF
- Gets the number of bytes between the beginning of user text and

the text address given by new limit . In this case, new limit must
have type

int (*newlimit)O;

Return Value

Upon successful completion, a nonnegative value is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.
EINV AL indicates an invalid cmd value.

October 10, 1988 Page 1

ULIMIT(S) ULIMIT(S)

See Also

10gin(M), machine(HW), chsize(S), sbrk(S), write(S).

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of any size can be written.

The file /ete/default/login contains the value of ULIMIT set at login
time by the login program. The super-user can set the maximum
(increase or decrease) file size using this variable. The value is in 512
byte blocks. The default value is 2,097,152 blocks. Use even values
for filesystems with 1024 byte blocks (see machine(HW)).

Page 2 October 1 0, 1988

UI'I1ASK(S)

Name

umask - Sets and gets file creation mask.

Syntax

int umask (cmask)
int cmask;

Description

UMASK(S)

umask sets the process' file mode creation mask to cmask and returns
the previous value of the mask. Only the low-order 9 bits of cmask
and the file mode creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also

mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

October 10, 1988 Page 1

UMOUNT(S) UMOUNT(S)

Name

umount - Unmounts a file system.

Syntax

int umount (spec)
char *spec;

Description

umount requests that a previously mounted file system contained on
the block special device identified by spec be unmounted. spec is a
pointer to a pathname. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary
interpretation.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

The process' effective user ID is not super-user. [EPERM]

spec does not exist. [ENXIO]

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

spec is not a block special device. [ENOTBLK]

spec is not mounted. [EINV AL]

A file on spec is busy. [EBUSY]

spec points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

mount(C), mount(S)

October 10, 1988 Page 1

UNAME(S)

Name

uname - Gets name of current XENIX system.

Syntax

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

Description

UNAME(S)

uname stores information identifying the current XENIX system in the
structure pointed to by name.

uname uses the structure defined in <sys/utsname.h>:

struct utsname {

} ;

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];
char reserved[15];
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;

uname returns a null-terminated character string naming the current
XENIX system in the character array sysname. Similarly, nodename
contains the name that the system is known by on a communications
network. Should be the same as site name in /etc/systemid. release
and version further identify the operating system. machine identifies
the processor that the system runs on, from the list: i8086, i80186,
i80286, i80386, MC68000, MC68010, MC68020, NS16032, NS32032,
Z8001, Z8002, VAX 11780, VAX11730, PDP 1123, and PDP 1170.
reserved is a reserved field. sysorigin and sysoem identify the source
(numbers) of the XENIX version. sysserial is a software serial number
which may be zero if unused.

uname will fail if name points to an invalid address. [EFAULT]

Return Value

Upon successful completion, a nonnegative value is returned. Other­
wise, -1 is returned and errno is set to indicate the error.

October 10, 1988 Page 1

UNAME(S) UNAME(S)

See Also

uname(C)

Notes

Not all fields may be set on a particular system. No XENIX utilities
currently use nodename in the uname structure. XENIX utilities use
the entry in lete! systemid . However, some sites may want to set
node name in the uname structure.

To create the node name entry in the uname structure, fIrst install the
Link Kit with custom(C), then enter the following commands:

cd /usr/sys/conf

./configure

Select "System Name" and enter nodename. nodename can be up
to 9 characters long.

./link_xenix

mv xenix /xenix.new

Reboot, specifying xenix.new as the kernel.

uname-a

Verify that nodename appears as desired.

mv /xenix.new /xenix

Reboot.

The uname function is a XENIX specific enhancement and may not be
present on all UNIX implementations.

Page 2 October 10, 1988

UNGETC(S)

Name

ungetc - Pushes character back into input stream.

Syntax

#include <stdiQ.h>

int ungetc (c, stream)
char c;
FILE *stream;

Description

UNGETC (S)

ungetc pushes the character c back on an input stream. The character
will be returned by the next getc call on that stream. ungetc returns c.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

fseek (S) erases all memory of pushed back characters.

See Also

fseek(S), getc(S), setbuf(S)

Diagnostics

ungetc returns EOF if it can't push a character back.

October 10, 1988 Page 1

UNLINK(S) UNLINK(S)

Name

unlink - Removes directory entry.

Syntax

int unlink (path)
char *path;

Description

unlink removes the directory entry named by the pathname pointed to
by path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link to
be removed. [EACCES]

The named file is a directory and the effective user ID of the pro­
cess is not super-user. [EPERM]

The entry to be unlinked is the mount point for a mounted file sys­
tem. [EBUSY]

The entry to be unlinked is "." or " .. " in the root directory of a
mounted filesystem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure (shared
text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys­
tem. [EROFS]

path points outside the process' allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to
exist. If one or more processes have the file open when the last link is
removed, the removal is postponed until all references to the file have
been closed.

October 10, 1988 Page 1

UNLINK(S) UNLINK(S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

rm(C), close(S), link(S), open(S)

Page 2 October 10, 1988

USTAT(S) USTAT(S)

Name

ustat - Gets file system statistics.

Syntax

#include <sys!types.h>
#include <ustat.h>

int ustat (dev, but')
dey t dey;
struct ustat *buf;

Description

ustat returns information about a mounted file system. dev is a device
number identifying a device containing a mounted file system. buf is
a pointer to a ustat structure that includes the following elements:

daddr_t f_tfree;
ino_t f_tinode;
char f_fname[6];
char f_fpack[6];

/* Total free blocks * /
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name * /

ustat will fail if one or more of the following are true:

dev is not the device number of a device containing a mounted file
system. [EINV AL]

bufpoints outside the process' allocated address space. [EFAULT]

Return Value

Upon successful completion, a value of ° is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

stat(S), statfs(S), filesystem(F), fsname(ADM)

Notes

When using file systems from previous versions ofXENIX,fsck(ADM)
must be run on the file system before mounting. Otherwise the ustat
system call will not work correctly. This only needs to be done once.

October 10, 1988 Page 1

UT/ME (S)

Name

utime - Sets file access and modification times.

Syntax

#include <sys/types_h>
int utime (path, times)
char *path;
struct utimbuf *times;

Description

UT/ME (S)

path points to a pathname naming a file. utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set
to the current time. A process must be the owner of the file or have
write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or
the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {

} ;

time_t actime; /* access time */
time_t modtime; /* modification time */

utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES]

The effective user ID is not super-user and not the owner of the file
and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the file
and times is NULL and write access is denied. [EACCES]

October 10, 1988 Page 1

UTIME(S) UTIME(S)

The file system containing the file is mounted read-only. [EROFS]

times is not NULL and points outside the process' allocated address
space. [EFAULT]

path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also

stateS)

Page 2 October 10, 1988

VARARGS (S)

Name

varargs - variable argument list

Synopsis

Description

#include <varargs.h>

function(va alist)
va dcl -
va-list pvar;
va -start(pvar);
f =-va arg(pvar, type);
va_ end(pvar);

VARARGS (S)

This set of macros provides a means of writing portable procedures
that accept variable argument lists. Routines having variable argu­
ment lists (such as printj(S)) that do not use varargs are inherently
nonportable, since different machines use different argument passing
conventions.

va_alist is used in a function header to denote a variable argument list.

va_dcl is a declaration for va_alist. Note that there is no semicolon
after va_dcl.

va_list is a type which can be used for the variable pvar, which is used
to traverse the. list. One such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argument in the list pointed to
by pvar. type is the type the argument is expected to be. Different
types can be mixed but it is up to the routine to know what type of
argument is expected since it cannot be determined at runtime.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

October 10, 1988 Page 1

VARARGS (S)

Example

#inelude <stdio.h>
#inelude <varargs.h>

mainO
{

show(2, 3.1, "but", 4.1, "end");
show(1, 5.9, "hello");

VARARGS (S)

show(4, 6.2, "oops", 5.3, "blah", 5.1, "lovely", 2.3, "madrigal' ');

/*
* the first argument is an int which tells how many pairs follow.
* the pairs are doubles and character pointers
*
* remember that when variables are passed to functions
* floats are promoted to doubles and chars to ints.
*/

show(n, va_alist)
int n;
va_del
{

Notes

va_list ap;
int i;
double f;
char *p;

va_start(ap);
for (i = 0; i < n; ++i) {

f = va_arg(ap, double);
p = va_arg(ap, char *);
printf("%4.lf %s\n", f, p);

It is up to the calling routine to determine how many arguments there
are, since it is not possible to determine this from the stack frame. For
exa..'TIple, excel passes a 0 to signal the end of the list. printf can tell
how many arguments are supposed to be there by the format of the list.

Page 2 October 10, 1988

VPRINTF(S) VPRINTF (S)

Name

vprintf, vfprintf, vsprintf - Prints formatted output of a varargs argu­
ment list.

Syntax

#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
vaJist ap;

Description

vprintj, vjprintj, and vsprintj are the same as printj, jprimj, and
sprintj respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined
in varargs.h.

See Also

printf(S)

October 10, 1988 Page 1

VPRINTF(S) VPRINTF(S)

Example

The following demonstrates how vfprintf could be used to write an
error routine:

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like

*
*/

error(function_name, format, argl, arg2 ...);

/*VARARGSO*/
void
error(va_alist)
/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

va_dcl
{

Files

va_list args;
char *fmt;

va_start(args);
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_ end(args);
(void)abort();

/usr/include/varargs.h

Page 2 October 10, 1988

WAIT(S) WAIT (S)

Name

wait - Waits for a child process to stop or tenninate.

Syntax

int wait (stat toc)
int *stat_toc;

int wait «int *)0)

Description

wait suspends the calling process until it receives a signal that is to be
caught (see signal(S)), or until anyone of the calling process' child
processes stops in a trace mode (see ptrace(S)) or tenninates. If a
child process stopped or tenninated prior to the calion wait, return is
immediate.

If stat _loc (taken as an integer) is nonzero, 16 bits of infonnation
called "status" are stored in the low-order 16 bits of the location
pointed to by stat loc. Status can be used to differentiate between
stopped and tennmated child processes and if the child process ter­
minated, status identifies the cause of tennination and passes useful
infonnation to the parent. This is accomplished in the following
manner:

If the child process stopped, the high-order 8 bits of status will be
zero and the low -order 8 bits will be set equal to 0177.

If the child process tenninated due to an exit call, the low-order 8
bits of status will be zero and the high-order 8 bits will contain the
low-order 8 bits of the argument that the child process passed to
exit; see exit (S).

If the child process tenninated due to a signal, the high-order 8 bits
of status will be zero and the low-order 8 bits will contain the
number of the signal that caused the tennination. In addition, if the
low-order seventh bit (Le., bit 200) is set, a "core image" will
have been produced; see signal (S).

If a parent process tenninates without waiting for its child processes
to tenninate, the parent process ID of each child process is set to 1.
This means the initialization process inherits the child processes; see
intro(S).

October 10, 1988 Page 1

WAIT(S) WAIT(S)

wait will fail and return immediately if one or more of the following
are true:

The calling process has no existing unwaited-for child processes.
[ECHILD]

stat _loe points to an illegal address. [EFAULT]

Return Value

If wait returns due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If wait returns due to a
stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

See Also

exec(S), exit(S), fork(S), pause(S), signal(S)

Warning

See Warning in signal(S).

Page 2 October 10, 1988

WAITSEM(S) WAITSEM(S)

Name

waitsem, nbwaitsem - Awaits and checks access to a resource
governed by a semaphore.

Syntax

int waitsem(sem num);
int sem _ num; -

int nbwaitsem(sem num);
int sem _ num; -

Description

waitsem gives the calling process access to the resource governed by
the semaphore sem _ num. If the resource is in use by another process,
waitsem will put the process to sleep until the resource becomes avail­
able; nbwaitsem will return the error ENAVAll.,. waitsem and
nbwaitsem are used in conjunction with sigsem to allow synchroniza­
tion of processes wishing to access a resource. One or more processes
may waitsem on the given semaphore and will be put to sleep until the
process which currently has access to the resource issues sigsem. sig­
sem causes the process which is next in line on the semaphore's queue
to be rescheduled for execution. The semaphore's queue is organized
in first in first out (FIFO) order.

System Compatibility

waitsem can only be used to synchronize semaphores created under
XENIX Version 3.0, not for XENIX System V semaphores.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

waitsem returns the value (int) -1 if an error occurs. If sem num has
not been previously opened by a call to opensem or creatsem --, errno is
set to EBADF. If sem num does not refer to a semaphore type file,
errno is set to ENOTNAM. All processes waiting (or attempting to
wait) on the semaphore return with errno set to ENAVAll., when the
process controlling the semaphore exits without relinquishing control

October 10, 1988 Page 1

WAITSEM(S) WAITSEM(S)

(thereby leaving the resource in an undeterminate state). If a process
does two waitsems in a row without doing an intervening sigsem,
errno is set to EINV AL.

Notes

This feature is a XENIX specific enhancement and may not be present
in all UNIX implementations. This routine must be linked with the
linker option -Ix.

Page 2 October 10, 1988

WRITE (S)

Name

write - Writes to a file.

Syntax

int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Description

WRITE (S)

fildes is a file descriptor obtained from a creat, open, dup, fcntZ, or
pipe system call.

write attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the fildes .

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon return
from write, the file pointer is incremented by the number of bytes
actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the 0 _APPEND flag of the file status flags is set, the file pointer is
set to the end of the file prior to each write.

write will fail and the file pointer will remain unchanged if one or
more of the following are true:

fiZdes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading
by any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process' file
size limit or the maximum file size. See ulimit (S). [EFBIG]

bufpoints outside the process' allocated address space. [EFAULT]

A signal was caught during the write system call. [EINTRJ

There is no free space remaining on the device containing the file.

October 10, 1988 Page 1

WRITE (S) WRITE (S)

If a write requests that more bytes be written than there is room for
(e.g., the ulimit (see ulimit(S)) or the physical end of a medium), only
as many bytes as there is room for will be written. For example, sup­
pose there is space for 20 bytes more in a file before reaching a limit.
A write of 512 bytes will return 20. The next write of a nonzero
number of bytes gives a failure return (except as noted below).

If the file being written is a pipe (or FIFO), no partial writes are per­
mitted. Thus, the write will fail if a write of nbyte bytes exceeds a
limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of
the file flag word is set, then a write to a full pipe (or FIFO) returns a
count of O. Otherwise (O_NDELAY clear), writes to a full pipe (or
FIFO) block until space becomes available.

Return Value

Upon successful completion, the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the
error.

See Also

creat(S), dup(S), Iseek(S), open(S), pipe(S), ulimit(S)

Notes

Writing a region of a file locked with locking causes write to hang
indefinitely until the locked region is unlocked.

Page 2 October 10, 1988

XLIST (S)

Name

xlist, fxlist - Gets name list entries from files.

Syntax

#include <a.out.h>

int xlist(filename, xl)
char *filename;
struct xlist xl[];

#include <a.out.h>
#include <stdio.h>
int fxlist(fp, xl)
FILE *fp;
struct xlist xl[];

Description

XLIST(S)

fxlist performs the same function as xlist, except that fxlist accepts a
pointer to a previously opened file instead of a filename.

xlist examines the name list in the given executable output file and
selectively extracts a list of values. The given executable file can be
either XENIX format or COFF. The name list structure xl consists of
an array of xlist structures containing names, types, values, and seg­
ment values (if applicable). The list is terminated by either a pointer
to a null name or a null pointer. Each name is looked up in the name
list of the file. If the name is found, the type and value of the name are
inserted into the next two fields. The segment value (if it exists) is
inserted in the third field. If the name is not found, both entries are set
to zero. See a.out(F) for a discussion of the xlist structure.

x.out and a.out formats are understood, as well as 8086 relocatable and
x.out segmented formats.

If the symbol table is in a.out format, and if the symbol name given to
xlist is longer than eight characters, only the first eight characters are
used for comparison. In all other cases, the name given to xlist must
be the same length as a name list entry in order to match.

If two or more symbols happen to match the name given to xlist, then
the type and value used will be those of the last symbol found.

October 10, 1988 Page 1

XLIST(S) XLIST(S)

See Also

a.out(F)

Diagnostics

xlist returns -1 and sets all type entries to zero if the file cannot be
read, is not an object file, or contains an invalid name list. Otherwise,
xlist returns zero. A return value of zero does not indicate that any or
all of the given symbols were found.

Page 2 October 10, 1988

Replace this Page
with Tab Marked:

DOS ROUTINES
(DOS)

Contents

DOS Development (DOS)

intro
bdos
cgets
cprintf
cputs
cscanf
dosexterr
eof
exit
fcloseall, fclose
fgetc, fgetchar
filelength
flush all
fp off, fp seg
fpntc, fputchar
getch
getche
inp
int86
int86x
intdos
intdosx
isatty
itoa
kbhit
labs
ltoa
mkdir
movedata
outp
putch
rename
rmdir
segread
setmode
sopen
spawnl, spawnvp

Introduction to DOS cross development functions.
Invokes a DOS system call.
Gets a string.
Formats output.
Puts a string to the console.
Converts and formats console input.
Gets DOS error messages.
Determines end-of-file.
Terminates the calling process.
Closes streams.
Gets a character from a stream.
Gets the length of a file.
Flushes all output buffers.
Return offset and segment.
Write a character to a stream.
Gets a character.
Gets and echoes a character.
Returns a byte.
Executes an interrupt.
Executes an interrupt.
Invokes a DOS system calL
Invokes a DOS system call.
Checks for a character device.
Converts numbers to integers.
Checks the console for a keystroke.
Returns the absolute value of a long integer.
Converts long integers to characters.
Creates a new directory.
Copies bytes from a specific address.
Writes a byte to an output port.
Writes a character to the console.
Renames a file or directory.
Deletes a directory.
Command description.
Sets translation mode.
Opens a file for shared reading and writing.
Creates a new process.

strlen
strlwr
strrev
strset
strupr
tell
ultoa
ungetch

ii

Returns the length of a string.
Converts uppercase characters to lowercase.
Reverses the order of characters in a string.
Sets all characters in a string to one charater.
Converts lowercase characters to uppercase.
Gets the current position of the file pointer.
Converts numbers to characters.
Returns a character to the console buffer.

INTRO (DOS) INTRO (DOS)

Name

intro - Introduction to DOS cross development functions.

Description

This section contains manual pages describing functions that can be
used to create program files executable under the DOS operating sys­
tem. These functions are specifically for use in creating DOS execut­
able program files.

Source files containing these functions must be compiled with the
-dos flag. For example:

cc -dos test.c

The resulting a.out file is executable only under the DOS operating
system. These functions cannot be used to create program files exe­
cutable under XENIX.

October 10, 1988 Page 1

BDOS(DOS)

Name

bdos - Invokes a DOS system call.

Syntax

#include <dos.h>

int bdos (dosfn, dosdx, dosal);
int dosfn;
unsigned int dosdx;
unsigned int dosal;

Description

BDOS(DOS)

The bdos function invokes the MS-DOS system call specified by dosfn
after placing the values specified by dosdx and dosal in the DX and
AL registers, respectively. bdos executes an INT 21H instruction to
invoke the system call. When the system call returns, bdos returns the
content of the AX register.

bdos is intended to be used to invoke DOS system calls that either
take no arguments or only take arguments in the DX (DH,DL) and/or
AL registers.

Return Value

bdos returns the value of the AX register after the system call has
completed.

See Also

intdos(DOS), intdosx(DOS)

Example

#include <bdos.h>

char *buffer = "Enter file name:$";

/* AL is not needed, so ° is used * /
bdos (9, (unsigned) buffer, 0);

October 10, 1988 Page 1

BDOS(DOS) BDOS(DOS)

Notes

This call should not be used to invoke system calls that indicate errors
by setting the carry flag. Since C programs do not have access to this
flag, the status of the return value cannot be determined. The intdos
function should be used in these cases.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

CGETS (DOS)

Name

cgets - Gets a string.

Syntax

#include <conio.h>

char *cgets (str);
char * str;

Description

CGETS(DOS)

The cgets function reads a string of characters directly from the con­
sole and stores the string and its length in the location pointed to by
str. The str must be a pointer to a character array. The first element of
the array, str[O], must contain the maximum length (in characters) of
the string to be read. The array must have enough elements to hold the
string, a terminating null character (\0'), and two additional bytes.

cgets continues to read characters until a carriage return/linefeed com­
bination (CR-LF) is read, or the specified number of characters have
been read. The string is stored starting at str[2]. If a CR-LF combina­
tion is read, it is replaced with a null character ('\0') before being
stored. cgets then stores the actual length of the string in the second
array element, str [1].

Return Value

cgets returns a pointer to the start of the string, which is at str[2].
There is no error returned.

See Also

getch(DOS), getche(DOS)

October 10, 1988 . Page 1

CGETS(DOS)

Example

#inc1ude <conio.h>

char buffer[82];
char *result;
int numread;

buffer = 80; / maximum number of characters * /
/* note that *buffer is equivalent
** to buffer[O]
*/

/* The following statements input a string from the
** keyboard and find its length.
*/

result = cgets(buffer);
numread = buffer[l];

/* Result points to the string, and numread is its

CGETS(DOS)

** length (not counting the carriage return, which has
** been replaced by a null character).
*/

Notes

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

CPRINTF (DOS) CPRINTF (DOS)

Name

cprintf - Formats output.

Syntax

#include <conio.h>

int cprintf (format[arg ...]);
char *format;

Description

The cprintj function formats and prints a series of characters and
values directly to the console, using the putch function to output char­
acters. Each argument (if any) is converted and output according to
the corresponding format specification in the format. The format has
the same form and function as the format argument for the printj func­
tion; see the printj reference page for a description of the format and
arguments.

Return Value

cprintj returns the number of characters printed.

See Also

fprintf(S), printf(S), sprintf(S)

Example

#include <conio.h>

int i = -16,j = 29;
unsigned int k = 511;

/* The following statement prints i=-16, j=Oxld, k=511 */

cprintf ("i=%d, j=%#x, k=%u\n",i,j,k);

October 10, 1988 Page 1

CPRINTF (DOS) CPRINTF (DOS)

Notes

Unlike the /print/, print/, and sprint[functions, cprint[does not
translate linefeed (LF) characters into carriage return/linefeed combi­
nations (CR-LF) on output.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

CPUTS (DOS)

Name

cputs - Puts a string to the console.

Syntax

#include <conio.h>

void cputs (str);
char *str;

Description

CPUTS (DOS)

The cputs function writes the null-tenninated string pointed to by str
directly to the console. Note that a carriage return/linefeed combina­
tion (CR-LF) is not automatically appended to the string after writing.

Return Value

There is no return value.

See Also

putch(DOS)

Example

Notes

#include <conio.h>

char *buffer = "Insert data disk in drive a: \r\n";

/* The following statement outputs a prompt to the
** console.
*/

cputs (buffer);

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

CSCANP (DOS)

Name

cscanf - Converts and formats console input.

Syntax

#include <conio.h>

int cscanf (format[arg ... J);
char *format;

Description

CSCANP (DOS)

The cscanf function reads data directly from the console into the loca­
tions given by the arguments (if any), using the getche function to
read characters. Each argument must be a pointer to a variable with a
type that corresponds to a type specifier in the format. The format
controls the interpretation of the input fields and has the same form
and function as the format argument for the scanf function.

Return Value

cscanf returns the number of fields that were successfully converted
and assigned. The return value does not include fields which were
read but not assigned.

The return value is EO~ for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

See Also

fscanf(S), scanf(S), sscanf(S)

Example

#include <conio.h>

int result;
char buffer[20];

cprintf ("Please enter file name: ");

/* The following statement stores string input
** from the keyboard.
*/

October 10, 1988 Page 1

CSCANF (DOS)

Notes

result = cscanf ("%19s",buffer);

/* Result is the number of correctly matched input
** fields. It is zero if none could be matched.
*/

This call must be compiled with the -dos flag.

Page 2

CSCANF (DOS)

October 10, 1988

DOSEXTERR (DOS) DOSEXTERR (DOS)

Name

dosexterr - Gets DOS error messages

Summary

#include <dos.h>

int dosexterr (buffer);
struct DOSERROR *buffer;

Description

The dosexterr function obtains the register values returned by the
MS-DOS system call 59H and stores the values in the structure
pointed to by buffer. This function is useful when making system
calls under MS-DOS Version 3.0 or later, which offers extended error
handling. See your MS-DOS reference for details on MS-DOS system
calls.

The structure type DOSERROR is defined in dos.h as follows:

struct DOSERROR {
int exterror;
char class;
char action;
char locus;
} ;

Giving a NULL pointer argument causes dosexterr to return the value
in AX without filling in the structure fields.

Return Value

The dosexterr function returns the value in the AX register (identical
to the value in the exterror structure field).

See Also

perror(S)

October 10, 1988 Page 1

DOSEXTERR (DOS) DOSEXTERR (DOS)

Example

Notes

#include <dos.h>
#include <fcntl.h>
#include <stdio.h>

struct DOSERROR doserror;
int fd;

if «fd = open ("test.dat", O_RDONLY» == -1) {
dosexterr (&doserror);
printf ("error=%d, class=%d, action=%d, locus=%d\n",

doserror.exterror, doserror.class,
doserror.action, doserror.locus);

The dosexterr function should only be used under MS-DOS Version
3.0 or later.

This can must be compiled with the -dos flag.

Page 2 October 10, 1988

EOF(DOS)

Name

eof - Determines end-of-file.

Syntax

#include <io.h>

int eof (handle);
int handle;

Description

EOF (DOS)

The eo! function determines whether end-of-file has been reached for
the file associated with handle.

Return Value

eo! returns the value 1 if the current position is end-of-file, 0 if it is
not. A return value of -1 indicates an error; in this case errno is set to
EBADF, indicating an invalid file handle.

See Also

ferror(S), perror(S)

October 10, 1988 Page 1

EOF(DOS)

Example

#include <io.h>
#include <fcntl.h>

int fh, count;
char buf[1 0];

fh = open ("data",O_RDONLY);

EOF(DOS)

/* The following statement tests for an end-of-file condition
** before reading.
*/

while (!eof (fu» {
count = read (fu, buf, 10);

Notes

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

EXIT (DOS)

Name

exit - Terminates the calling process.

Syntax

#include <process.h>

void exit (status);

void _exit (status);

int status;

Description

EXIT (DOSY

The exit and exit functions terminate the calling process. exit flushes
all buffers and closes all open files before terminating the process.
_exit terminates the process without flushing stream buffers. Status is
typically given the value ° to indicate a normal exit and set to some
other value to indicate an error.

Although the exit and exit calls do not return a value, the low-order
byte of status is made available to the waiting parent process, if there
is one, after the calling process exits. If there is no parent process
waiting on the exiting process, the status value is lost.

Return Value

There is no return value.

See Also

abort(S), exec(S), spawnl(DOS)

October 10, 1988 Page 1

EXIT (DOS)

Example

Notes

#include <process.h>
#include <stdio.h>

FILE *stream;

/* The following statements cause the process to
** terminate, after flushing buffers and closing
** open files, if another file cannot be opened.
*/

if «stream = fopen ("data","r")) == NULL) {
perror ("couldn't open data file");
exit (1);
}

/* The following statements cause the process to
** terminate immediately if a file cannot be opened.
*/

if «stream = fopen ("data","r")) == NULL) {
perror ("couldn't open data file");
exit (1);
}

These calls must be compiled with the -dos flag.

EXIT (DOS)

Page 2 October 10, 1988

FCLOSEALL (DOS)

Name

fclose, fcloseall - Closes streams.

Syntax

#include <stdio.h>

int fclose (stream);
FILE *stream;

int fcloseall ();

Description

FCLOSEALL (DOS)

The fclose and fcloseall functions close a stream or streams. All
buffers associated with the stream(s) are flushed prior to closing.
System-allocated buffers are released when the stream is closed.
Buffers assigned using setbuf are not automatically released.

The fclose function closes the given stream. The fcloseall function
closes all open streams except stdin, stdout, stderr, stdaux, and stdprn.

Return Value

fclose returns 0 if the stream is successfully closed. fcloseall returns
the total number of streams closed. Both functions return EOF to indi­
cate an error.

See Also

close(S), fopen(S), fclose(S)

October 10, 1988 Page 1

FCLOSEALL (DOS)

Example

#include <stdio.h>

FILE *stream;
int numclosed;

stream = fopen ("data", "r");

/* The following statement closes the stream.
*/

fclose (stream);

FCLOSEALL (DOS)

/* The following statement closes all streams except
** stdin, stdout, stderr, stdaux, and stdpm.
*/

numclosed = fcloseall ();

Notes

These calls must be compiled with the ados flag.

Page 2 October 10, 1988

FGETC(DOS)

Name

fgetc, fgetchar - Gets a character from a stream.

Syntax

#include <stdio.h>

int fgetc (stream);
FILE *stream;

int fgetchar ();

Description

FGETC(DOS)

The fgetc function reads a single character from the input stream at
the current position and increments the associated file pointer (if any)
to point to the next character. fgetchar is equivalent to fgetc (stdin).

Return Value

fgetc and fgetchar return the character read. A return value of EOF
may indicate an error or end-of-file; however, the EOF value is also a
legitimate integer value, so feof or ferror should be used to verify an
error or end-of-file condition.

See Also

putc(S), fputchar(DOS), getc(S)

October 10, 1988 Page 1

FGETC(DOS) FGETC(DOS)

Example

Notes

#include <stdio.h>

FILE * stream;
char buffer[81];
int i;
int ch;

/* The following statements gather a line of input from
** a stream.
*/

for (i = 0; (i < 80) && ((ch = fgetc (stream» != EOF) &&
(ch != '\n'); i++)
buffer[i] = ch;

buffer[i] = '\0';

/* "fgetchar ()" could be used instead of "fgetc (stream),' in
** the for statement above to gather a line of input from
** stdin (equivalent to "fgetc (stdin)").
*/

fgetc andfgetchar are identical to getc and getchar, but are functions,
not macros.

These calls must be compiled with the -dos flag.

Page 2 October 10, 1988

FILELENGTH (DOS) FILELENGTH (DOS)

Name

filelength - Gets the length of a file.

Syntax

#include <io.h>

long fllelength (handle);
int handle;

Description

The filelength function returns the length in bytes of the file associ­
ated with the given handle.

Return Value

filelength returns the file length in bytes. A return value of -IL indi­
cates an error, and errno is set to EBADF to indicate an invalid file
handle.

See Also

chsize(S), ferror(S), stat(S)

Example

#inc1ude <io.h>
#inc1ude <stdio.h>
#inc1ude <stdlib.h>

FILE *stream;
long length;

stream = fopen ("data", "r");

/* The following statements attempt to determine the
** length of a file associated with a stream.
*/

length = filelength (fileno (stream»;

if (length == -1 L)
perror ("filelength failed' ');

October 10, 1988 Page 1

FILELENGTH (DOS)

Notes

This call must be compiled with the -dos flag.

Page 2

FILELENGTH (DOS)

October 10, 1988

FLUSHALL (DOS) FLUSHALL (DOS)

Name

flushall - Flushes all output buffers.

Syntax

#include <stdio.h>

int flushall ();

Description

The functionJlushall causes the contents of all buffers associated with
open output streams to be written to the associated files. All streams
remain open after the call.

Return Value

flushall returns the number of open streams (input and output). There
is no error return.

See Also

fc1ose(S)

Example

#inc1ude <stdio.h>

int numflushed;

/* The following statement resolves any pending i/o on
** all streams.
*/

numflushed = flushall ();

October 10, 1988 Page 1

FLUSHALL (DOS) FLUSHALL (DOS)

Notes

Buffers are automatically flushed when they are full, when streams are
closed, or when a program terminates normally without closing
streams.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

Name

fp_off, fp_seg - Return offset and segment.

Syntax

#include <dos.h>

unsigned FP _ OFF(longptr);

unsigned FP _ SEG(longptr);

char far *Iongptr;

Description

The FP OFF and FP SEG macros return the offset and segment,
respectively, of the long pointer longptr.

Return Value

FP _OFF returns an unsigned integer value representing an offset.
FP _ SEG returns an unsigned integer value representing a segment
address.

See Also

segread(DOS)

Example

Notes

#inc1ude <dos.h>

char far *p;
unsigned int sp;
unsigned int op;

sp = FP _SEG(p);
op = FP _ OFF(p);

These calls must be compiled with the -dos flag.

October 10, 1988 Page 1

FPUTC(DOS)

Name

fputc, fputchar - Write a character to a stream.

Syntax

#include <stdio.h>

int fputc (c, stream);
int c;
FILE *stream;

int fputchar (c);
int c;

Description

FPUTC(DOS)

The fputc function writes the single character c to the output stream at
the current position. fputchar is equivalent tofputc(c, stdout).

Return Value

fputc andfputchar return the character written. A return value of EOF
may indicate an error. However, since the EOF value is also a legiti­
mate integer value, use ferror to verify an error condition.

See Also

fgetc(DOS), getc(S), putc(S)

October 10, 1988 Page 1

FPUTC (nos) FPUTC (nos)

Example

Notes

#inc1ude <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

/* The following statements write the contents of a buffer to
** a stream. Note that the output occurs as a side effect
** within the for statement's second expression, so the
** statement body is null.
*/

for (i = 0; (i < 81) &&
((ch = fputc (buffer[i],stream» != EOF); i++)

/* "fputchar ()" could be used instead of "fputc (stream),'
** in the for statement above to write the buffer to stdout
** (equivalent to "fputc (stdout)").
*/

[pute and[putehar are identical to pute and putehar, but are functions,
not macros.

These calls must be compiled with the -dos flag.

Page 2 October 10, 1988

GETCH(DOS) GETCH(DOS)

Name

getch - Gets a character.

Syntax

#include <conio.h>

int getch ();

Description

The getch function reads, without echoing, a single character directly
from the console. Characters typed are not echoed. If a CONTROL-C
is typed, the system executes an INT 23H (CONTROL-C exit).

Return Value

getch returns the character read. There is no error return.

See Also

cgets(DOS), getche(DOS), getchar(S)

Example

Notes

#include <conio.h>
#include <ctype.h>

int ch;

/* This loop gets characters from the keyboard until a
** non-blank character is seen. Preceding blank
** characters are discarded.
*/

do {
ch = getch ();
} while (isspace (ch»;

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

GETCHE (DOS) GETCHE (DOS)

Name

getche - Gets and echoes a character.

Syntax

#include <conio.h>

int getche ();

Description

The getche function reads a single character from the console and
echoes the character read. If a CONTROL-C is typed, the system exe­
cutes an !NT 23H (CONTROL-C exit).

Return Value

getche returns the character read. There is no error return.

See Also

cgets(DOS), getch(DOS)

Example

Notes

#include <conio.h>
#include <ctype.h>

int ch;

/* Get a character from the keyboard and echo it to the
** console. If it is an upper case letter, convert it
** to lower case and write over the old character.
*/

ch = getche ();

if (isupper (ch»
cprintf ("\b%c",tolower (ch»;

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

INP (DOS)

Name

inp - Returns a byte.

Syntax

#include <conio.h>

int inp (port);
unsigned port;

Description

INP (DOS)

The inp function reads one byte from the input port specified by port.
The port argument can be any unsigned integer number in the range 0
to 65,535.

Return Value

inp returns the byte read from port. There is no error return.

See Also

outp(DOS)

Example

Notes

#inc1ude <conio.h>

unsigned port;
char result;

/* The following statement inputs a byte from the port
** that 'port' is currently set to.
*/

result = inp (port);

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

INT86 (DOS)

Name

int86 - Executes an interrupt.

Syntax

#include <dos.h>

int int86(intno, inregs, outregs);
int intno;
union REGS *inregs;
union REGS *outregs;

Description

INT86 (DOS)

The int86 function executes the 8086 software interrupt specified by
the interrupt number intno. Before executing the interrupt, int86
copies the contents of inregs to the corresponding registers. After the
interrupt returns, the function copies the current register values to
outregs. It also copies the status of the system carry flag to the cflag
field in outregs. The inregs and outregs arguments are unions of type
REGS. The union type is defined in the include file dos.h.

Int86 is intended to be used to invoke DOS interrupts directly.

Return Value

The return value is the value in the AX register after the interrupt
returns. If the flag field in outregs is nonzero, an error has occurred
and the doserrno variable is also set to the corresponding error code.

See Also

bdos(DOS), intdos(DOS), intdosx(DOS), int86x(DOS)

October 10, 1988 Page 1

INT86 (DOS) INT86 (DOS)

Example

Notes

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

/*
* Use int86 routine to generate a CONTROL-C interrupt
* (interrupt number Ox23) which would be caught by the
* interrupt handling routine inthandler. Note that the
* values in the regs struct do not matter for this
* interrupt.
*/

#define CNTRLC Ox23
int inthandler (int);
union REGS regs;

signal (SIGINT, inthandler);

int86(CNTRLC, ®s, ®s);

Segment registers are not included in inregs or outregs.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

INT86X (DOS)

Name

int86x - Executes an interrupt.

Syntax

#include <dos.h>

int int86x (intno, in regs, outregs, segregs);
int intno;
union REGS *inregs;
union REGS *outregs;
struct SREGS *segregs;

Description

INT86X (DOS)

The int86x function executes the 8086 software interrupt specified by
the interrupt number intno. Unlike the int86 function, int86x accepts
segment register values in segregs, letting programs that use long
model data segments or far pointers specify which segment or pointer
should be used during the system call.

Before executing the specified interrupt, int86x copies the contents of
inregs and segregs to the corresponding registers. Only the DS and ES
register values in segregs are used. After the interrupt returns, the
function copies the current register values to outregs and restores DS.
It also copies the status of the system carry flag to the cflag field in
outregs. The inregs and outregs arguments are unions of type REGS.
The segregs argument is a structure of type SREGS. These types are
defined in the include file dos.h.

int86x is intended to be used to directly invoke DOS interrupts that
take an argument in the ES register, or take a DS register value that is
different than the default data segment.

Return Value

The return value is the value in the AX register after the interrupt
returns. If the flag field in outregs is nonzero, an error has occurred
and the doserrno variable is also set to the corresponding error code.

See Also

bdos(DOS), intdos(DOS), intdosx(DOS), int86(DOS), segread(DOS),
FP _SEG(DOS)

October 10, 1988 Page 1

INT86X (DOS) INT86X (DOS)

Example

Page 2

#inc1ude <signal.h>
#inc1ude <dos.h>
#inc1ude <stdio.h>
#inc1ude <process.h>

/*
* Use int86x routine to generate an interrupt Ox21 (system
* call), which invokes the DOS 'Change Attributes' system
* call. The int86x routine is used because the filename to
* be referenced may be in a segment other than the default
* data segment (it is referenced by a far pointer), so the
* DS register must be explicitly set via the SREGS struct.
*/

#define SYSCALL Ox21 /* INT 21 H invokes system
calls */

#define CHANGE_ATTR Ox43
attributes * /

/* system call 43H - change

char far *filename; /* filename in 'far' data
segment */

union REGS inregs, outregs;
struct SREGS segregs;
int result;

inregs.h.ah = CHANGE_ATTR; /* AH is system call
number */

inregs.h.al = 0; /* AL is function (get
attributes) */

inregs.x.dx = FP _OFF(filename); /* DS:DX points to file
name */

segregs.ds = FP _SEG(filename);
result = int86x (SYSCALL, &inregs, &outregs, &segregs);
if (outregs.x.cflag) {

printf ("can't get attributes of file; error number %d\n",
result);

exit (1);
}

else {
printf (" ~AAttribs ~ %#x\.rt", cutregs.x.cx);
} .

October 10, 1988

INT86X (DOS) INT86X (DOS)

Notes

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _SEG macro.

This call must be compiled with the -dos flag.

October 10, 1988 Page 3

INTDOS (DOS)

Name

intdos - Invokes a DOS system call.

Syntax

#include <dos.h>

int intdos (inregs, outregs);
union REGS *inregs;
union REGS *outregs;

Description

INTDOS (DOS)

The intdos function invokes the DOS system call specified by register
values defined in inregs and returns the effect of the system call in
outregs. The inregs and outregs arguments are unions of type REGS.
The union type is defined in the include file dos.h.

To invoke a system call, intdos executes an INT 21 H instruction.
Before executing the instruction, the function copies the contents of
inregs to the corresponding registers. After the INT instruction
returns, intdos copies the current register values to outregs. It also
copies the status of the system carry flag to the cflag field in outregs.
If this field is nonzero, the flag was set by the system call and indi­
cates an error condition.

intdos is intended to be used to invoke DOS system calls that take
arguments in registers other than DX (DH/DL) and AL, or to invoke
system calls that indicate errors by setting the carry flag.

Return Value

intdos returns the value of the AX register after the system call has
completed. If the flag field in outregs is nonzero, an error has
occurred and doserrno is also set to the corresponding error code.

See Also

bdos(DOS), int86(DOS), int86x(DOS), intdosx(DOS)

October 10, 1988 Page 1

INTDOS (DOS) INTDOS (DOS)

Example

Notes

#include <dos.h>
#include <stdio.h>

union REGS inregs, outregs;

/* The following statements get the current date using
** dos function call 2a hex.
*/

inregs.h.ah = Ox2a;
intdos (&inregs,&outregs);
printf (" date is %d/%d/%d\n" ,outregs.h.dh,outregs.h.dl,

outregs.x.cx);

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

INTDOSX (DOS)

Name

intdosx - Invokes a DOS system call.

Syntax

#include <dos.h>

int intdosx (inregs, outregs, segregs);
union REGS *inregs;
union REGS *outregs;
struct SREGS *segregs;

Description

INTDOSX (DOS)

The intdosx function invokes the DOS system call specified by regis­
ter values defined in inregs and returns the effect of the system call in
outregs. Unlike the intdos function, intdosx accepts segment register
values in segregs, letting programs that use long model data segments
or far pointers specify which segment or pointer should be used during
the system call. The inregs and outregs arguments are unions of type
REGS. The segregs argument is a structure of type SREGS. These
types are defined in the include file dos.h.

To invoke a system call, intdosx executes an INT 21H instruction.
Before executing the instruction, the function copies the contents of
inregs and segregs to the corresponding registers. Only the DS and ES
register values in segregs are used. After the INT instruction returns,
intdosx copies the current register values to outregs and restores DS.
It also copies the status of the system carry flag to the cflag field in
outregs. If this field is nonzero, the flag was set by the system call
and indicates an error condition.

intdosx is intended to be used to invoke DOS system calls that take an
argument in the ES register, or that take a DS register value that is dif­
ferent from the default data segment.

Return Value

intdosx returns the value of the AX register after the system call has
completed. If the flag field in outregs is nonzero, an error has
occurred and doserrno is also set to the corresponding error code.

See Also

bdos(DOS), intdos(DOS), segread(DOS), FP _SEG(DOS)

October 10, 1988 Page 1

INTDOSX (DOS) INTDOSX (DOS)

Example

#inc1ude <dos.h>

union REGS inregs, outregs;
struct SREGS segregs;
char far *dir = "/test/bin";

/* The following statements change the current working
** directory with dos function call 3b hex.
*/

inregs.h.ah = Ox3b; /* change directory */
inregs.x.dx = FP _OFF(dir); /* file name offset */
segregs.ds = FP _SEG(dir); /* file name segment */
intdosx (&inregs,&outregs,&segregs);

The above example must be compiled using the -Me flag.

Notes

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _ SEG macro.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

ISATTY (DOS)

Name

isatty - Checks for a character device.

Syntax

#include <io.h>

int isatty (handle);
int handle;

Description

ISATTY (DOS)

The isatty function determines whether the given handle is associated
with a character device (that is, a terminal, console, printer or serial
port).

Return Value

isatty returns a nonzero value if the device is a character device. Oth­
erwise, the return value is O.

Example

Notes

#include <io.h>

int tb;
long loc;

if (isatty (tb) == 0)
loc = tell (tb); /* if not a device, get current

** position
*/

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

ITOA (DOS)

Name

itoa - Converts integers to characters.

Syntax

#include <stdlih.h>

char *itoa (value, string, radix);
int value;
char *string;
int radix;

Description

ITOA (DOS)

The itoa function converts the digits of the given value to a null­
tenninated character string and stores the result in string. The radix
argument specifies the base of value. It must be in the range 2-36. If
radix equals 10 and value is negative, the first character of the stored
string is the minus sign (-).

Return Value

itoa returns a pointer to string. There is no error return.

See Also

Itoa(DOS), ultoa(DOS)

Example

#inc1ude <stdlib.h>

int radix = 8;
char buffer[20];
char *p;

p = itoa (-3445,buffer,radix); /* p = "171213" */

October 10, 1988 Page 1

ITOA (DOS) ITOA (DOS)

Notes

The space allocated for string must be large enough to hold the
returned string. The function can return up to 17 bytes.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

KBHIT(DOS) KBHIT(DOS)

Name

kbhit - Checks the console for a keystroke.

Syntax

#include <conio.h>

int kbhit ();

Description

The kbhit function checks the console for a recent keystroke.

Return Value

kbhit returns a nonzero value if a key has been pressed. Otherwise, it
returns zero.

Example

Notes

#inc1ude <conio.h>

int result;

/* The following statement tests to see if a key has
** been hit.
*/

result = kbhit ();

/* If result is nonzero, a keystroke is waiting in the
** buffer. It can be fetched with getch or getche.
** If getch or getche were called without first checking
** kbhit, the program might pause while waiting for
**input.
*/

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

LABS (DOS)

Name

labs - Returns the absolute value of a long integer.

Syntax

#include <stdlib.h>

long labs (n);
long n;

Description

LABS (DOS)

The labs function produces the absolute value of its long integer argu­
ment n.

Return Value

labs returns the absolute value of its argument. There is no error
return.

See Also

abs(S), fabs(S), hypot(S)

Example

#include <stdlib.h>

long x, y;

x = -41567L;
Y = labs (x); /* y = 41567L */

Notes

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

LTOA (DOS)

Name

ltoa .. Converts long integers to characters.

Syntax

#include <stdlih.h>

char *ltoa (value, string, radix);
long value;
char *string;
int radix;

Description

LTOA (DOS)

The ltoa function converts the digits of the given value to a null­
terminated character string and stores the result in string. The radix
argument specifies the base of value. It must be in the range 2-36. If
radix equals 10 and value is negative, the first character of the stored
string is the minus sign (-).

Return Value

ltoa returns a pointer to string. There is no error return.

See Also

itoa(DOS), ultoa(DOS)

Example

Notes

#include <stdlib.h>

int radix = 10;
char buffer[20];
char *p;

p = ltoa (-344115L,buffer,radix); /* p = "-344115" */

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

MKDIR (DOS)

Name

mkdir - Creates a new directory.

Syntax

#include <direct.h>

int mkdir (pathname);
char *pathname;

Description

MKDIR (DOS)

The mkdir function creates a new directory with the specified path­
name. Only one directory can be created at a time, so only the last
component of pathname can name a new directory.

Return Value

mkdir returns the value 0 if the new directory was created. A return­
value of -1 indicates an error, and ermo is set to one of the following
values:

Value Meaning

EACCES Directory not created: the given name is the
name of an existing file, directory, or device.

ENOENT Pathname not found.

See Also

chdir(S), rmdir(DOS)

October 10, 1988 Page 1

MKDIR (DOS) MKDIR (DOS)

Example

Notes

#include <direct.h>

int result;

/* The following two statements create two new directories:
** one at the root on drive b:, and one in the "tmp"
** subdirectory of the current working directory.
*/

result = mkdir ("b:/tmp"); /* "b:\\tmp" could also
** be used
*/

result = mkdir (' 'tmp/sub' '); /* "tmp\\sub" could also
** be used
*/

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

MOVEDATA (DOS) MOVEDATA (DOS)

Name

movedata - Copies bytes from a specific address.

Syntax

#include <memory.h>

void movedata (srcseg, srcoff, destseg, destoff, nbytes);
int srcseg;
int srcoff;
int destseg;
int destoff;
unsigned nbytes;

Description

The movedata function copies nbytes bytes from the source address
specified by srcseg:srcoff to the destination address specified by
destseg :destoJf

movedata is intended to be used to move far data in small or medium
model programs where segment addresses of data are not implicitly
known. In large model programs, the memcpy function can be used
since segment addresses are implicitly known.

Return Value

There is no error return.

See Also

memory(S), segread(DOS), FP _OFF(DOS)

October 10, 1988 Page 1

MOVEDATA (DOS) MOVEDATA (DOS)

Example

Notes

#include <memory.h>
#include <dos.h>

char far * src;
char far *dest;

/* The following statement move 512 bytes of data from
** src to the dest.
*/

movedata(FP _SEG(src), FP _OFF(src), FP _SEG(dest),
FP _OFF(dest, 512);

x = -14.87654321;
Y = modf (x,&n); /* y = -0.87654321, n = -14.0 */

Segment values for the srcseg and destseg arguments can be obtained
by using either the segread function or the FP _SEG macro.

movedata does not handle all cases of overlapping moves correctly
(overlapping moves occur when part of the destination is the same
memory area as part of the source). Overlapping moves are handled
correctly in the memcpy function.

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

OUTP (DOS)

Name

outp - Writes a byte to an output port.

Syntax

#include <conio.h>

int outp (port, value);
unsigned port;
int value;

Description

OUTP (DOS)

The outp function writes the specified value to the output port speci­
fied by port. The port argument can be any unsigned integer in the
range 0 to 65,535. value can be any integer in the range 0 to 255.

Return Value

outp returns value. There is no error return.

See Also

inp(DOS)

Example

Notes

#include <conio.h>

int port, byte_val;

/* The following statement outputs a byte to the port
** that 'port' is currently set to.
*/

outp (port,byte_ val);

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

PUTCH(DOS)

Name

putch - Writes a character to the console.

Syntax

#include <conio.h>

void putch (c)
int c;

Description

PUTCH(DOS)

The putch function writes the character c directly to the console.

Return Value

There is no return value.

See Also

cprintf(DOS), getch(DOS), getche(DOS)

Example

#inc1ude <conio.h>

/* This example shows how the getche function could be defined
** using putch and getch.

Notes

*/

int getche ()
{

int ch;

ch == getch ();
putch (ch);
return (ch);

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

RENAME (DOS) RENAME (DOS)

Name

rename - renames a file or directory.

Syntax

#include <io.h>

int rename (newname, oldname);
char *newname;
char *oldname;

Description

The rename function renames the file or directory specified by old­
name to the name given by newname. oldname must specify the path­
name of an existing file or directory. Newname must not specify the
name of an existing file or directory.

The rename function can be used to move a file from one directory to
another by giving a different pathname in the new name argument.
However, files cannot be moved from one device to another (for
example, from Drive A to Drive B). Directories can only be renamed,
not moved.

Return Value

rename returns 0 if it is successfuL

See Also

createS), fopen(S), open(S)

Example

Notes

#include <io.h>

int result;

/* The following statement changes the file "data" to
** have the name "input".
*/
result = rename ("input", "data"):

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

RMDIR (DOS)

Name

nndir - Deletes a directory.

Syntax

#include <direct.h>

int rmdir (pathname);
char *pathname;

Description

RMDIR (DOS)

The rmdir function deletes the directory specified by pathname. The
directory must be empty, and it must not be the current working direc­
tory or the root directory.

Return Value

rmdir returns the value ° if the directory is successfully deleted. A
return value of -1 indicates an error, and errno is set to one of the fol­
lowing values:

Value Meaning

EACCES The given pathname is not a directory, the
directory is not empty, or the directory is the
current working directory or root directory.

ENOENT Pathname not found.

See Also

chdir(S), mkdir(DOS)

October 10, 1988 Page 1

RMDIR(DOS)

Example

Notes

#inc1ude <direct.h>

int result!, result2;

/* The following statements delete two directories:
** one at the root, and one in the current working
* * directory.
*/

resultl = rmdir ("/data");
resu1t2 = rmdir ("data");

This call must be compiled with the -dos flag.

Page 2

RMDIR(DOS)

October lO, 1988

SEGREAD (DOS) SEGREAD (DOS)

Name

segread - retrieves segment register values.

Syntax

#include <dos.h>

void segread (segregs);
struct SREGS *segregs;

Description

The segread function fills the structure pointed to by segregs with the
current contents of the segment registers. The function is intended to
be used with the intdosx and int86x functions to retrieve segment
register values for later use.

Return Value

There is no return value.

See Also

intdosx(DOS), int86x(DOS), FP _SEG(DOS)

Example

Notes

#inc1ude <dos.h>

struct SREGS segregs;
unsigned int cs, ds, es, ss;

/* The following statements get the current values of
** the segment registers.
*/

segread (&segregs);
cs = segregs.cs;
ds = segregs.ds;
es = segregs.es;
ss = segregs.ss;

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

SET MODE (DOS) SET MODE (DOS)

Name

setmode - Sets translation mode.

Syntax

#include <fcntl.h>
#include do.h>

int setmode (handle, mode);
int handle;
int mode;

Description

The setmode function sets the translation mode of the file given by
handle to mode. The mode must be one of the following manifest con­
stants:

Manifest Constant Meaning

a_TEXT Set text (translated) mode. Carriage
returnllinefeed combinations (CR-LF) are
translated into a single linefeed (LF) on
input. Linefeed characters are translated
into carriage return/linefeed combinations
on output.

a_BINARY Set binary (untranslated) mode. The above
translations are suppressed.

setmode is typically used to modify the default translation mode of
stdin, stdout, stderr, stdaux, and stdprn, but can be used on any file.

Return Value

If successful, setmode returns the previous translation mode. A return
value of -1 indicates an error, and errno is set to one of the following
values:

Value Meaning

EBADF Invalid file handle

EINVAL Invalid mode argument (neither a_TEXT nor
a_BINARY)

October 10, 1988 Page 1

SET MODE (DOS) SETMODE (DOS)

See Also

createS), fopen(S), open(S)

Example

Notes

#inc1ude <stdio.h>
#inc1ude <fcntl.h>
#inc1ude <io.h>

int result;

/* The following statement sets stdin to be binary
** (initially it is text).
*/

result = setmode (fileno (stdin),O_BINARY);

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

SOPEN(DOS) SOPEN(DOS)

Name

sopen - Opens a file for shared reading and writing.

Syntax

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <share.h>
#include <io.h>

int sopen (pathname, oflag, shflag[, pmode]);
char *pathname;
int oflag;
int shflag;
int pmode;

Description

The sop en function opens the file specified by pathname and prepares
the file for subsequent shared reading or writing as defined by oflag
and shflag. oflag is an integer expression fonned by combining one or
more of the following manifest constants, defined in lentl.h. When
more than one manifest constant is given, the constants are joined
with the OR operator (I).

Oflag Meaning

° _APPEND Reposition the file pointer to the end of the file
before every write operation.

O_CREAT Create and open a new file; this has no effect if
the file specified by pathname exists.

° _EXCL Return an error value if the file specified by
pathname exists. Only applies when used with
O_CREAT.

O_RDONLY Open file for reading only; if this flag is given,
neither O_RDWR nor 0_ WRONLY may be
given.

O_RDWR Open file for both reading and writing; if this
flag is given, neither O_RDONLY nor
0_ WRONLY may be given.

October 10, 1988 Page 1

SOPEN (DOS) SOPEN (DOS)

O_TRUNC Open and truncate an existing file to 0 length;
the file must have write pennission, and the
contents of the file are destroyed.

0_ WRONLY Open file for writing only; if this flag is given,
neither O_RDONLY nor O_RDWR may be
given.

O_BINARY Open file in binary (untranslated) mode. (See
Jopen for a description of binary mode.)

O_TEXT Open file in text (translated) mode. (See Jopen
for a description of text mode.)

_TRUNC destroys the complete contents of an existing file. Use with
care.

shflag is a constant expression consisting of one of the following man­
ifest constants, defined in share.h. See your MS-DOS documentation
for detailed infonnation on sharing modes.

shflag Meaning

SH_COMPAT Set compatibility mode.

SH_DENYRW Deny read and write access to file.

SH_DENYWR Deny write access to file.

SH_DENYRD Deny read access to file.

SH_DENYNONE Pennit read and write access.

The pmode argument is required only when _CREAT is specified. If
the file does not exist, pmode specifies the file's pennission settings,
which are set when the new file is closed for the first time. Otherwise,
the pmode argument is ignored. The pmode argument is an integer
expression containing one or both of the manifest constants
S_IWRITE and S_IREAD, defined in sys/stat.h. When both constants
are given, they are joined with the OR operator (I). The meaning of
the pmode argument is as follows:

Page 2

Value

S_IWRITE

Meaning

Writing pennitted

October 10, 1988

SOPEN (DOS) SOPEN (DOS)

S_IREAD Reading permitted

S_IREAD I S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Under MS-DOS
all files are readable; it is not possible to give write-only permission.
Thus, the modes S_IWRITE and S_IREAD I S_IWRITE are
equivalent.

sopen applies the current file permission mask to pmode before setting
the permissions (see umask).

Return Value

sopen returns a file handle for the opened file. A return value of -1
indicates an error, and errno is set to one of the following values:

Value Meaning

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

See Also

Given pathname is a directory; or the file is
read-only but an open for writing was
attempted; or a sharing violation occurred (the
file's sharing mode does not allow the specified
operations; MS-DOS versions 3.0 or later only).

The _CREAT and _EXCL flags are specified
but the named file already exists.

SHARE. COM not installed.

No more file handles available (too many open
files).

File or pathname not found.

close(S), createS), fopen(S), open(S), umask(S)

October 10, 1988 Page 3

SOPEN(DOS)

Example

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <share.h>
#include <io.h>

extern unsigned char _osmajor;
int fh;

/* The _osmajor variable is used to test
** the MS-DOS version number before
** calling sopen.
*/

if Cosmajor >= 3) .

SOPEN(DOS)

fh = sopen ("data", O_RDWR I O_BINARY, SH_DENYRW);
else

fh = open ("data", O_RDWR I O_BINARY);

Notes

The sopen function should be used only under MS-DOS version 3.0 or
later. Under earlier versions of MS-DOS, the shflag argument is
ignored.

File sharing modes will not work correctly for buffered files, so do not
use Jdopen to associate a file opened for sharing (or locking) with a
stream.

This call must be compiled with the -dos flag.

Page 4 October 10, 1988

SPAWNL (DOS)

Name

spawnl, spawnvp - Creates a new process.

Syntax

#include <stdio.h>
#include <process.h>

SPAWNL (DOS)

int spawnl (modeflag, pathname, argO, argl. .. argn, NULL);

int spawnle (modeflag, pathname, argO, argl ... argn, NULL, envp);

int spawnlp (modeflag, path name, argO, argl. .. argn, NULL);

int spawnv (modeflag, path name, argv);

int spawnve (modeflag, pathname, argv, envp);

int spawnvp (modeflag, pathname, argv);

int modeflag;
char *pathname;
char *argO, *argl. .. *argn;
char *argv [];
char *envp [];

Description

The spawn functions create and execute a new child process. There
must be enough memory available for loading and executing the child
process. The modeflag argument determines the action taken by the
parent process before and during the spawn. The following values for
modeflag are defined in process.h:

Value Meaning

P _ WAIT Suspend parent process until execution of child
process is complete

P _NOWAIT Continue to execute parent process con­
currently with child process

P _OVERLAY Overlay parent process with child, destroying
the parent (same effect as exec calls)

Only the P _WAIT and P _OVERLAY modeflag values may currently
be used. The P _NOWAIT value is reserved for possible future imple­
mentation. An error value is returned if P _NOWAIT is used.

October 10, 1988 Page 1

SPAWNL (DOS) SPAWNL (DOS)

The pathname argument specifies the file to be executed as the child
process. The pathname can specify a full path (from the root), a par­
tial path (from the current working directory), or just a filename. If
pathname does not have a filename extension or end with a period (.),
the spawn calls first append the extension .COM and search for the
file; if unsuccessful, the extension .EXE is attempted. If pathname
has an extension, only that extension is used. If pathname ends with a
period, the spawn calls search for pathname with no extension. The
spawnlp and spawnvp routines search for path name (using the same
procedures) in the directories specified by the PATH environment
variable.

Arguments are passed to the child process by giving one or more
pointers to character strings as arguments in the spawn call. These
character strings form the argument list for the child process. The
combined length of the strings forming the argument list for the child
process must not exceed 128 bytes. The terminating null character
('\0') for each string is not included in the count, but space characters
(automatically inserted to separate arguments) are included.

The argument pointers may be passed as separate arguments (spawnl,
spawnle, and spawnlp) or as an array of pointers (spawnv, spawnve,
and spawnvp). At least one argument, argO or argv [0], must be passed
to the child process. By convention, this argument is a copy of the
path name argument. (A different value will not produce an error.)
Under versions of MS-DOS earlier than 3.0, the passed value of argO
or arg[O] is not available for use in the child process. However, under
MS-DOS 3.0 and later, the pathname is available as argO or arg[O].

The spawnl, spawnle and spawnlp calls are typically used in cases
where the number of arguments is known in advance. argO is usually a
pointer to pathname. argJ through argn are pointers to the character
strings forming the new argument list. Following argn there must be a
NULL pointer to mark the end of the argument list.

spawnv, spawnve, and spawnvp are useful when the number of argu­
ments to the child process is variable. Pointers to the arguments are
passed as an array, argv. argv [0] is usually a pointer to the pathname.
argv [1] through argv [n] are pointers to the character strings forming
the new argument list. argv [n+ 1] must be a NULL pointer to mark the
end of the argument list.

Files that arc open when a spawn call is made remain open in the child
process. In the spawnl, spawnlp, spawnv, and spawnvp calls, the child
PH}CE;55 lulu:a:ii.:s the environment of the parent. spawnLe and spawnve
allow the user to alter the environment for the child process by passing
a list of environment settings through the envp argument. envp is an
array of character pointers, each element of which points to a null­
terminated string defining an environment variable. Such a string has
the form:

Page 2 October 10, 1988

SPAWNL (DOS) SPAWNL (DOS)

NAME=value

where NAME is the name of an environment variable and value is the
string value to which that variable is set. (Notice that value is not
enclosed in double quotes.) When envp is NULL, the child process
inherits the environment settings of the parent process.

Return Value

The return value is the exit status of the child process. The exit status
is ° if the .process terminated normally. The exit status can also be set
to a nonzero value if the child process specifically calls the exit rou­
tine with a nonzero argument. If not set, a positive exit status indi­
cates an abnormal exit via an abort or an interrupt.

A return value of -1 indicates an error (the child process is not
started), and errno is set to one of the following values:

Value Meaning

E2BIG The argument list exceeds 128 bytes or the
space required for the environment information
exceeds 32K bytes.

EINV AL Invalid mode flag argument.

ENOENT File or pathname not found.

ENOEXEC The specified file is not executable or has an
invalid executable file format.

ENOMEM Not enough memory is available to execute the
child process.

See Also

abort(S), exec(S), exit(DOS)

October 10, 1988 Page 3

SPAWNL (DOS) SPAWNL (DOS)

Example

Notes

#include <stdio.h>
#include <process.h>

extern char **environ;

char *args[4];
int result;

args[O] = "child' ';
args[1] = "one";
args[2] = "two";
args[3] = NULL;

/* All of the following statements attempt to spawn a
** process called "child.exe" and pass it 3 arguments.
** The first 3 suspend the parent, and the last 3
** overlay the parent with the child.
*/

result = spawnl (P _ WAIT, "child.exe", ' 'child' " "one' " ' 'two' "
NULL);

result = spawnle (P_WAIT,"child.exe","child","one",
"two" ,NULL,environ);

result = spawnlp (P _ WAIT,"child.exe","child' ',"one",
"two",NULL);

result = spawnv (P _OVERLAY, "child.exe",args);
result = spawnve (P _OVERLAY,"child.exe",args,environ);
result = spawnvp (P _OVERLAY,"child.exe",args);

The spawn calls do not preserve the translation modes of open files. If
the child process must use files inherited from the parent, the setmode
routine should be used to set the translation mode of these files to the
desired mode.

Signal settings are not preserved in child processes created by calls to
spawn routines. The signal settings are reset to the default in the child
process.

These calls must be compiled with the -dos flag.

Page 4 October 10, 1988

STRLEN (DOS)

Name

strlen - Returns the length of a string.

Syntax

#include <string.h>

int strlen (string);
char *string;

Description

STRLEN (DOS)

The strlen function returns the length in bytes of string , not including
the tenninating null character ('\0').

Return Value

strlen returns the string length. There is no error return.

Example

Notes

#include <string.h>

char *string = "some space";
int result;

/* Detennine the length of a string.
*/

result = strlen (string); /* result = 10 */

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

STRLWR (DOS) STRLWR (DOS)

Name

strlwr - Converts uppercase characters to lowercase characters.

Syntax

#include <string.h>

char *strlwr (string);
char *string;

Description

The strlwr function converts any uppercase letters in the given null­
tenninated string to lowercase. Other characters are not affected.

Return Value

strlwr returns a pointer to the converted string. There is no error
return.

See Also

strupr(DOS)

Example

Notes

#include <string.h>

char string[100], *copy;

/* Make a copy of a string in lower case.
*/

copy = strlwr (strdup (string»;

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

STRREV (DOS)

Name

strrev - Reverses the order of characters in a string.

Syntax

#include <string.h>

char *strrev (string);
char *string;

Description

STRREV (DOS)

The strrev function reverses the order of the characters in the given
string. The tenninating null character ('\0') remains in place.

Return Value

strrev returns a pointer to the altered string. There is no error return.

See Also

strcat(S), strset(DOS)

Example

Notes

#inc1ude <string.h>

char string[100];
int result;

/* Detennine if a string is a palindrome (the same
** string read forwards and backwards).
*/

result = strcmp (string,strrev (strdup (string»);

/* If result==O the string is a palindrome.
*/

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

STRSET(DOS)

Name

strset - Sets all characters in a string to one character.

Syntax

#include <string.h>

char *strset (string, c);
char *string;
char c;

Description

STRSET (DOS)

The strset function sets all characters of the given string except the
tenninating null character ('\0') to c.

Return Value

strset returns a pointer to the altered string. There is no error return.

See Also

string(S)

Example

Notes

#include <string.h>

char string[100], *result;

/* Set a string to be all blanks.
*/

result = strset (string,' ');

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

October 10, 1988

STRUPR (DOS) STRUPR (DOS)

Name

strupr - Converts lowercase characters to uppercase.

Syntax

#include <string.h>

char *strupr (string);
char *string;

Description

The strupr function converts any lowercase letters in the given string
to uppercase. Other characters are not affected.

Return Value

strupr returns a pointer to the converted string. There is no error
return.

See Also

strlwr(DOS)

Example

Notes

#include <string.h>

char string[100], *copy;

/* The following statement makes a copy of a string in
** uppercase.
*/

copy = strupr (strdup (string));

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

TELL (DOS)

Name

tell - Gets the current position of the file pointer.

Syntax

#include <io.h>

long tell (handle);
int handle;

Description

TELL (DOS)

The tell function gets the current position of the file pointer (if any)
associated with handle. The position is expressed as the number of
bytes from the beginning of the file.

Return Value

tell returns the current position. A return value of -lL indicates an
error, and errno is set to EBADF to indicate an invalid file handle
argument. On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

See Also

fseek(S), Iseek(S)

Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

int fh;
long position;

fh = open ("data",ORDONLY);

position = tell (fh); /* remember current position */

Iseek (fh, position, 0); /* seek to previous position * /

October 10, 1988 Page 1

TELL (DOS) TELL (DOS)

Notes

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

ULTOA (DOS)

Name

ultoa - Converts numbers to characters.

Syntax

#include <stdlib.h>

char *ultoa (value, string, radix);
unsigned long value;
char *string;
int radix;

Description

ULTOA (DOS)

The ultoa function converts the digits of the given value to a null­
terminated character string and stores the result in string. No over­
flow checking is performed. The radix argument specifies the base of
value. It must be in the range 2-36.

Return Value

ultoa returns a pointer to string. There is no error return.

See Also

itoa(DOS), ltoa(DOS)

Example

Notes

#include <stdlib.h>

int radix = 16;
char buffer[40];
char *p;

/* p will be "501d9138 */
p = ultoa (1344115000L,buffer,radix);

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

This call must be compiled with the -dos flag.

October 10, 1988 Page 1

UNGETCH(DOS)

Name

ungetch - Returns a character to the console buffer.

Syntax

#include <conio.h>

int ungetch (c);
int c;

Description

UNGETCH (DOS)

The ungetch function pushes the character c back to the console, caus­
ing c to be the next character read. ungetch fails if it is called more
than once before the next read.

Return Value

ungetch returns the character c if it is successful. A return value of
EOF indicates an error.

See Also

cscanf(DOS), getch(DOS), getche(DOS)

October 10, 1988 Page 1

UNGETCR (DOS) UNGETCR (DOS)

Example

Notes

#include <conio.h>
#include <ctype.h>

char buffer[lOO];
int count = 0;
int ch;

/* The following code gets a token, delimited by blanks
** newlines, from the keyboard.
*/

ch = getche ();

while (isspace (ch»
ch = getche ();

/* skip preceding white space */

while (count < 99) { /* gather token */
if (isspace (ch» /* end of token * /

break;

buffer[count ++] = ch;
ch = getche ();
}

ungetch (ch);
buffer[count] = '\0';

/* put back delimiter * /
/* null terminate the token * /

This call must be compiled with the -dos flag.

Page 2 October 10, 1988

Replace this Page
with Tab Marked:

Permuted Index

Permuted Index
Commands, System Calls, Library Routines and File Formats

This pennuted index is derived from the "Name" description lines found on each
reference manual page. Each index line shows the title of the entry to which the line
refers, followed by the reference manual section letter where the page is found.

To use the permuted index search the middle column for a key word or phrase. The right
hand column contains the name and section letter of the manual page that documents
the key word or phrase. The left column contains additional useful infonnation about
the command. Commands or routines are also listed in the context of the index line,
followed by a colon (:). This denotes the "beginning" of the sentence. Notice that in
many cases, the lines wrap, starting in the middle column and ending in the left column.
A slash (/) indicates that the description line is truncated.

coffconv: Convert 386 COFF files to XENIX fonnat.
13tol, lto13: Converts between 3-byte integers and long/

• coffconv(M)
13tol(S)
10gin(M)
a641(S)

accepts a number of 512-byte blocks. • • . . • • • .
between long integer and base 64 ASCII. a641, 164a: Converts

Object Modules. 86rel: Intel 8086 Relocatable Fonnat for 86rel(F)
asx(CP)
86rel(F)
a641(S)
abort(S)

asx: XENIX 8086/186/286/386 Assembler.
Fonnat for Object Modules. 86rel: Intel 8086 Relocatable

long integer and base 64 ASCII. a641, 164a: Converts between
abort: Generates an lOT fault.

value. abs: Returns an integer absolute
abs: Returns an integer absolute value. .•...

and/ /fabs, ceil, fmod: Perfonns absolute value, floor, ceiling
integer. labs: Returns the absolute value of a long • . .

blocks. accepts a number of 512-byte
files. settime: Changes the access and modification dates of

a file. touch: Updates access and modification times of
utime: Sets file access and modification times.

of a file. access: Determines accessibility
dosls, dosnn, dosnndir: Access DOS files. •••••

directory. chmod: Changes the access permissions of a file or
a/ /nbwaitsem: Awaits and checks access to a resource governed by

sdenter, sdleave: Synchronizes access to a shared data segment.
sputl, sgetl: Accesses long integer data in a/

endutent, utmpname: Accesses utmp file entry.
access: Detennines accessibility of a file.

Synchronizes shared data access. sdgetv, sdwaitv:

• abs(S)
abs(S)
floor(S)
labs(DOS)
10gin(M)

• settime(ADM)
• touch(C)

utime(S)
• access(S)

dos(C)
chmod(C)

· waitsem(S)
• sdenter(S)

sput1(S)
getut(S)
access(S)

csplit: Splits files according to context. •.••••
nnuser: Removes a user account from the system.

sdgetv(S)
csplit(C)
nnuser(ADM)

accton: Turns on accounting. . . .
acct: Fonnat of per-process accounting file.

accton(ADM)
acct(F)

1-1

Permuted Index

Searches for and prints process accounting files. acctcom:
imacct: Generate an IMAGEN accounting report.

Enables or disables process accounting. acct:
process accounting. acct: Enables or disables

accounting file. acct: Format of per-process
process accounting files. acctcom: Searches for and prints

accton: Turns on accounting.
sin, cos, tan, asin, acos, atan, atan2: Performs/

Prints current SCCS file editing activity. sact: • . . . • •
information about system activity. uptime: Displays

debugger. adb: Invokes a general-purpose
Copies bytes from a specific address. movedata:

mkuser: Adds a login ID to the system.
nl: Adds line numbers to a file.

lineprinters. lpinit: Adds, reconfigures and maintains
swapadd: Adds swap area. . •

putenv: Changes or adds value to environment.
SCCS files. admin: Creates and administers

admin: Creates and administers SCCS files.
netutil: Administers the XENIX network.

uuinstall: Administers UUCP control files.
pwadmin: Performs password aging administration.

sysadmsh: Menu driven system administration utility.
uadmin: administrative control.

pwadmin: Performs password aging administration.
alarm: Sets a process' alarm clock.

clock. alarm: Sets a process' alarm
aliashash: Micnet alias hash table generator.

table generator. aliashash: Micnet alias hash
faliases: Micnet aliasing files. ••••.••

brkctl: Allocates data in a far segment.
malloc, free, realloc, calloc: Allocates main memory.

brk: Changes data segment space allocation. sbrk, • • • • • •
file. inittab: Alternative login terminals

terminals/ telinit, mkinittab: Alternative method of turning
Generates programs for lexical analysis. lex: •.••••

document. style: Analyzes characteristics of a
link editor output. a.out: Format of assembler and

ar: Archive file format.
libraries. ar: Maintains archives and .

dc: Invokes an arbitrary precision calculator.

1-2

cpio: Format of cpio archive. •••..
ar: Archive file format.
t~r: 9.r('hi"~ f0!"!TIat.

the names of files on a backup archive. dumpdir: Prints
ar: Maintains archives and libraries.

tar: Archives files. • . • • .
cpio: Copies file archives in and out.
ranlib: Converts archives to random libraries.

swapadd: Adds swap area.
varargs: variable argument list.

acctcom(ADM)
imacct(C)
acct(S)
acct(S)
acct(F)

• acctcom(ADM)
accton(ADM)
trig(S)
sact(CP)
uptime(C)
adb(CP)
movedata(DOS)
mkuser(ADM)
nl(C)

• Ipinit(ADM)
swapadd(S)
putenv(S)
admin(CP)
admin(CP)

• netutil(ADM)
• uuinstall(ADM)

pwadmin(ADM)
sysadmsh(ADM)
uadmin(S)
pwadmin(ADM)
alarm(S)
alarm(S)
aliashash(ADM)
aliashash(ADM)
aliases(M)
brkct1(S)
malloc(S)
sbrk(S)
inittab(F)
telinit(ADM)
lex(CP)
style(CT)
a.out(F)
ar(F)
ar(CP)
dc(C)
cpio(F)
ar(F)

dumpdir(C)
ar(CP)
tar(C)
cpio(C)
ranlib(CP)
swapadd(S)
varargs(S)

Permuted Index

output of a varargs argument list. /Prints formatted vprintf(S)
getopt: Gets option letter from argument vector. • getopt(S)

expr: Evaluates arguments as an expression. expr(C)
echo: Echoes arguments. echo(C)

ascii: Map of the ASCII character set. ascii(M)
character set. ascii: Map of the ASCII ascii(M)

atof, atoi, atol: Converts ASCII to numbers. . • . . • atof(S)
between long integer and base 64 ASCII. a64l, 164a: Converts a64I(S)

tzset: Converts date and time to ASCII. /gmtime, asctime, ctime(S)
and/ ctime, localtime, gmtime, asctime, tzset: Converts date ctime(S)

Performs/ sin, cos, tan, asin, acos, atan, atan2: trig(S)
commands. help: Asks for help about SCCS help(CP)

time of day. asktime: Prompts for the correct • asktime(ADM)
output. a.out: Format of assembler and link editor a.out(F)

asx: XENIX 8086/186/286/386 Assembler. .• asx(CP)
masm: Invokes the XENIX assembler. masm(CP)

program. assert: Helps verify validity of assert(S)
deassigns devices. assign, deassign: Assigns and assign(C)

assign, deassign: Assigns and deassigns devices. assign(C)
setbuf, setvbuf: Assigns buffering to a stream. setbuf(S)

setkey: Assigns the function keys. setkey(C)
Close the event queue and all associated devices. ev 310se: ev _close(S)

Assembler. asx: XENIX 8086/186/286/386 asx(CP)
a later time. at, batch: Executes commands at . at(C)

sin, cos, tan, asin, acos, atan, atan2: Performs/ . . • • trig(S)
sin, cos, tan, asin, acos, atan, atan2: Performs trigonometric/ trig(S)

to numbers. atof, atoi, atol: Converts ASCII atof(S)
double-precision/ strtod, atof: Converts a string to a . .. strtod(S)

numbers. atof, atoi, atol: Converts ASCII to atof(S)
integer. strtol, atol, atoi: Converts string to strtol(S)

integer. strtol, atol, atoi: Converts string to strtol(S)
atof, atoi, atol: Converts ASCII to numbers. . atof(S)

/Print file to printer attached to a serial console consoleprint(ADM)
lprint: Print to a printer attached to the user's terminal Iprint(C)

data segment. sdget, sdfree: Attaches and detaches a shared sdget(S)
the system. autoboot: Automatically boots autoboot(ADM)

schedule: Database for automated system backups . • schedule(ADM)
autoboot: Automatically boots the system. • autoboot(ADM)

resource/ waitsem, nbwaitsem: Awaits and checks access to a waitsem(S)
processes. wait: Awaits completion of background wait(C)

a pattern in a file. awk: Searches for and processes • awk(C)
wait: Awaits completion of background processes. ••••• wait(C)

Prints the names of files on a backup archive. dumpdir: dumpdir(C)
sddate: Prints and sets backup dates. .•.•. sddate(C)

/Default backup device information. archive(F)
format. backup: Incremental dump tape backup(F)

file system backup. backup: Performs incremental backup(C)
Performs incremental file system backup. backup: backup(C)
Performs incremental file system backup. dump: ••..• dump(C)

error-checking file system backup fsave: Interactive, fsave(ADM)
sysadmin: Performs file system backups and restores files. sysadmin(ADM)

1-3

Permuted Index

periodic semi-automated system backups fsphoto: Performs
Database for automated system backups schedule:
fixed disk for flaws and creates bad track table. badtrk: Scans

flaws and creates bad track! badtrk: Scans fixed disk for
banner: Prints large letters. •

between long integer and base 64 ASCII. /164a: Converts
and sets the configuration data base. cmos: Displays • • •
and sets the configuration data base. cmos: Displays • • •

names from pathnames. basename: Removes directory
Terminal capability data base. termcap: ••.••
terminal capability data base. terminfo: •••••

later time. at, batch: Executes commands at a

fordifJ.

cb:
jO,jl,jn, yO, yl, yn: Performs

Performs Bessel functions.

mail uudecode: decode a
mail uuencode: encode a

fixhdr: Changes executable
selected parts of executable

fread, fwrite: Performs buffered
bsearch: Performs a

tfind, tdelete, twalk: Manages
Creates an instance of a

Removes symbols and relocation
shutdn: Flushes

cmchk: Reports hard disk
df: Report number of free disk

Calculates checksum and counts
accepts a number of 512-byte

fdswap: Swaps default
boot: XENIX

bc: Invokes a calculator.
bdiff: Compares files too large
bdos: Invokes a DOS system call.
Beautifies C programs.
Bessel functions. bessel,
bessel,jO,jl,jn, yO, yl, yn:
bfs: Scans big files. • • • •
binary file for transmission via
binary file for transmission via
binary file headers. . • •
binary files. hdr: Displays
binary input and output. •
binary search. . • • • • •
binary search trees. tsearch,
binary semaphore. creatsem:
bits. strip:.. • . • • • •
block I/O and halts the cpu.
block size.
blocks.
blocks in a file. sum:
blocks.
boot floppy drive. •••••
boot program. •
boot: XENIX boot program.

autoboot: Automatically boots the system.
allocation. sbrk, brk: Changes data segment space

segment. brkctl: Allocates data in a far
search. bsearch: Performs a binary

output. fread, fwrite: Performs buffered binary input and
stdio: Performs standard buffered LTlput ~nd output.
setbuf, setvbuf: Assigns buffering to a stream.

Rll"h",n· PI""]'",,, <>11 ""mllt
_. __ • __ 40 - --~---~ -- -~'1"'~' b!!ffers.

buffer. ungetch: Returns
Builds special files.
byte. • .••••••

fsphoto(ADM)
schedule(ADM)
badtrk(ADM)
badtrk(ADM)
banner(C)
a64I(S)
cmos(HW)
cmos(HW -86)
basename(C)
termcap(M)
terminfo(M)
at(C)
bc(C)
bdiff(C)

• bdos(DOS)
cb(CP)
bessel(S)
bessel(S)
bfs(C)
uuencode(C)
uuencode(C)
fixhdr(C)
hdr(CP)
fread(S)
bsearch(S)
tsearch(S)
creatsem(S)
strip(CP)
shutdn(S)
cmchk(C)
df(C)
sum(C)
10gin(M)
fdswap(ADM)
boot(HW)
boot(HW)
autoboot(ADM)

• sbrk(S)
brkctl(S)
bsearch(S)
fread(S)
stdio(S)
setbuf(S)

a character to the console
mknod:

inp: Returns a
outp: Writes a

movedata: Copies
swab: Swaps

cc: Invokes the

byte to an output port. •••••

ungetch(DOS)
mknod(C)
inp(DOS)
outp(DOS)
movedata(DOS)
swab(S)

bytes from a specific address.
bytes.
C compiler. • .•••••• cc(CP)

1-4

Permuted Index

cflow: Generates C flow graph. cflow(CP)
cpp: The C language preprocessor. cpp(CP)

lint: Checks C language usage and syntax. lint(CP)
cxref: Generates C program cross-reference. cxref(CP)

cb: Beautifies Cprograms. cb(CP)
xref: Cross-references C programs. xref(CP)

xstr: Extracts strings from Cprograms. xstr(CP)
an error message file from C source. mkstr: Creates mkstr(CP)

distance. hypot, cabs: Determines Euclidean hypot(S)
cal: Prints a calendar. cal(C)

blocks in a file. sum: Calculates checksum and counts sum(C)
bc: Invokes a calculator. bc(C)

Invokes an arbitrary precision calculator. dc: dc(C)
cal: Prints a calendar. cal(C)

service. calendar: Invokes a reminder calendar(C)
bdos: Invokes a DOS system call. bdos(DOS)

intdos: Invokes a DOS system call. intdos(DOS)
intdosx: Invokes a DOS system call. intdosx(DOS)

exit: Terminates the calling process. exit(DOS)
malloc, free, realloc, calloc: Allocates main memory. malloc(S)

cu: Calls another XENIX system. cu(C)
Data returned by stat system call. stat: stat(F)

lineprinter. lp,lpr, cancel: Send/cancel requests to Ip(C)
termcap: Terminal capability data base. termcap(M)
terminfo: terminal capability data base. terminfo(M)

descriptions into terminfo/ capinfo: convert termcap capinfo(C)
files. cat: Concatenates and displays cat(C)

catimp: Convert C/Arr files to imPRESS format. catimp(CT)
Generate troff width files and catab file. charmap: charmap(CT)

imPRESS format. catimp: Convert C/ Arr files to catimp(CT)
cb: Beautifies C programs. cb(CP)
cc: Invokes the C compiler. cc(CP)
cd: Changes working directory. cd(C)

commentary of an SCCS delta. cdc: Changes the delta cdc(CP)
value, floor,! floor, fabs, ceil, fmod: Performs absolute floor(S)

/Performs absolute value, floor, ceiling and remainder functions. floor(S)
cflow: Generates C flow graph. cflow(CP)
cgets: Gets a string. cgets(DOS)

delta: Makes a delta (change) to an SCCS file. delta(CP)
allocation. sbrk, brk: Changes data segment space sbrk(S)

headers. fixhdr: Changes executable binary file fixhdr(C)
chgrp: Changes group ID. • • chgrp(C)

passwd: Changes login password. passwd(C)
chmod: Changes mode of a file. chmod(S)

environment. putenv: Changes or adds value to putenv(S)
chown: Changes owner ID. • . • chown(C)

nice: Changes priority of a process. nice(S)
command. chroot: Changes root directory for chroot(ADM)

modification dates off settime: Changes the access and settime(ADM)
of a file or directory. chmod: Changes the access permissions chmod(C)

an SCCS delta. cdc: Changes the delta commentary of cdc(CP)

1-5

Permuted Index

file. newfonn: Changes the fonnat of a text
file. chown: Changes the owner and group of a

chroot: Changes the root directory.
chsize: Changes the size of a file.
chdir: Changes the working directory.

password file. chsh: changes user login shell in
cd: Changes working directory.

stream. ungetc: Pushes character back into input
eqnchar: Contains special character definitions for eqn.

isatty: Checks for a character device.
ioctl: Controls character devices.

fgetc, fgetchar: Gets a character from a stream.
getch: Gets a character. •.••.

getche: Gets and echoes a character.
getc, getchar, fgetc, getw: Gets character or word from a stream.

/putchar, fputc, putw: Puts a character or word on a stream.
ascii: Map of the ASCII character set.

trchan: Translate character sets •. . . • •
fputc, fputchar: Write a character to a stream.

ungetch: Returns a character to the console buffer.
putch: Writes a character to the console. . .
style: Analyzes characteristics of a document.

Displays/changes hard disk characteristics. dparam: . •
strrev: Reverses the order of characters in a string.

charater. strset: Sets all characters in a string to one
ltoa: Converts long integers to characters. •..•.

strlwr: Converts uppercase characters to lowercase.
strupr: Converts lowercase characters to uppercase.

tr: Translates characters. ••.••
ultoa: Converts numbers to characters.

wc: Counts lines, words and characters. .••••
tolower, toascii: Translates characters. conv, toupper,

toascii: Classifies or converts characters. /tolower, toupper,
characters in a string to one charater. strset: Sets all

files and catab file. charmap: Generate troff width
directory. chdir: Changes the working

fstab: File system mount and check commands. •••••
permissions file uucheck: check the uucp directories and

constant-width text fori cw, checkcw, cwcheck: Prepares
mathematical text/ eqn, neqn, checkeq, eqncheck: Formats

processed by fsck. checklist: List of file systems
of MM macros. CheCY"....T 111, m..~checl(: Checks usage

waitsem, nbwaitsem: A waits and checks access to a resource/

1-6

;:;ck: Check.:; iUIJ icpaiH) lilt: systems.
syntax. lint: Checks C language usage and

isatty: Checks for a character device.
grpcheck: Checks group file.

diction: Checks language usage.
pwcheck: Checks password file. • •

keystroke. kbhit: Checks the console for a
to be read. rdchk: Checks to see if there is data

newform(C)
chown(S)
chroot(S)
chsize(S)
chdir(S)
chsh(ADM)
cd(C)
ungetc(S)
eqnchar(CT)
isatty(DOS)
ioctl(S)
fgetc(DOS)
getch(DOS)
getche(DOS)
getc(S)
putc(S)
ascii(M)
trchan(M)
fputc(DOS)
ungetch(DOS)
putch(DOS)
style(CT)
dparam(ADM)
strrev(DOS)
strset(DOS)
ltoa(DOS)
strlwr(DOS)
strupr(DOS)
tr(C)
ultoa(DOS)
wc(C)
conv(S)
ctype(S)
strset(DOS)
charmap(CT)
chdir(S)
fstab(F)
uucheck(ADM)
cw(CT)
eqn(CT)
checklist(F)
checkrnrn(eT)
waitsem(S)

• fsck(ADIvi)
lint(CP)
isatty(DOS)
grpcheck(C)
diction(CT)
pwcheck(C)
kbhit(DOS)
rdchk(S)

checkmm, mmcheck: Checks usage of MM macros.
file. sum: Calculates checksum and counts blocks in a

chgrp: Changes group ID.
times: Gets process and child process times.

terminate. wait: Waits for a child process to stop or
chmod: Changes mode of a file.

permissions of a file or/ chmod: Changes the access
chown: Changes owner ID.

group of a file. chown: Changes the owner and
for command. chroot: Changes root directory

directory. chroot: Changes the root
in password file. chsh: changes user login shell

file. chsize: Changes the size of a
tolower, toupper, toascii: Classifies or converts/ /isascii,

uuclean: uucp spool directory clean-up .•...•...
clear: Clears a terminal screen.

stream status. ferror, feof, clearerr, fileno: Determines
clear: Clears a terminal screen.

clri: Clears inode. .•..•
a shell command interpreter with C-like syntax. csh: Invokes

alarm: Sets a process' alarm clock.•.
clock: Reports CPU time used.

(time of day) clock. clock: The system real-time
system real-time (time of day) clock. clock: The
system real-time (time of day) clock. setclock: Sets the

operations. closedir: Performs directory
close: Closes a file descriptor.

fclose, ff1ush: Closes or flushes a stream.
shuts down the/ haltsys, reboot: Closes out the file systems and

fclose, fcloseall: Closes streams. ..••..•
clri: Clears inode. .•.••

size. cmchk: Reports hard disk block
configuration data base. cmos: Displays and sets the

cmp: Compares two files.
coffconv: Convert 386 COFF files to XENIX format.

col: Filters reverse linefeeds.
screen: tty[Ol-n], color, monochrome, ega,.

setcolor: Set screen color. ...•..•..
lc: Lists directory contents in columns. . . • . • • . .

comb: Combines SCCS deltas.
comb: Combines SCCS deltas.

common to two sorted files. comm: Selects or rejects lines
nice: Runs a command at a different priority.

segread: command description.
env: Sets environment for command execution.

quits. nohup: Runs a command immune to hangups and
rsh: Invokes a restricted shell (command interpreter).

sh: Invokes the shell command interpreter. .• . . •
syntax. csh: Invokes a shell command interpreter with C-like

uux: Executes command on remote XENIX.
getopt: Parses command options. •.••.•

Permuted Index

checkmm(CT)
sum(C)
chgrp(C)
times(S)
waiteS)
chmod(S)
chmod(C)
chown(C)
chown(S)
chroot(ADM)
chroot(S)
chsh(ADM)
chsize(S)
ctype(S)
uuclean(ADM)
clear(C)
ferror(S)
clear(C)
clri(ADM)
csh(C)
alarm(S)
clock(S)
c1ock(F)
c1ock(F)
setclock(ADM)
directory (S)
close(S)
fclose(S)
haltsys(ADM)
fclose(DOS)
clri(ADM)
cmchk(C)
cmos(HW)
cmp(C)
coffconv(M)
col(CT)
screen(HW)
setcolor(C)
Ie(C)
comb(CP)
comb(CP)
comm(C)
nice(C)
segread(DOS)
env(C)

• nohup(C)
rsh(C)
sh(C)
csh(C)
uux(C)
getopt(C)

1-7

Permuted Index

system: Executes a shell command.
time: Times a command.

Changes root directory for command. chroot:
at, batch: Executes commands at a later time.

cron: Executes commands at specified times.
micnet: The Micnet default commands file.

help: Asks for help about SCCS commands. • . • . . . • •
intro: Introduces XENIX commands. . . . • . • • •

system. remote: Executes commands on a remote XENIX
xargs: Constructs and executes commands.

1-8

File system mount and check commands. fstab:
Introduces text processing commands. intro: •...•

XENIX Development System commands. intro: Introduces
cdc: Changes the delta commentary of an SCCS delta.

comm: Selects or rejects lines common to two sorted files.
/the status of inter-process communication facilities.
ftok: Standard interprocess communication package.

dircmp: Compares directories. •
sdiff: Compares files side-by-side.

dijf. bdiff: Compares files too large for
diskcp, diskcmp: Copies or compares floppy disks.

dift3: Compares three files.
cmp: Compares two files.
diff: Compares two text files.

file. sccsdiff: Compares two versions of an SCCS
regexp: Regular expression compile and match routines.

terminfo: Format of compiled terminfo file.
cc: Invokes the C compiler. • . • •

tic: Terminfo compiler. • . . • •
yacc: Invokes a compiler-compiler. . •

expressions. regex, regcmp: Compiles and executes regular
regcmp: Compiles regular expressions.

erf, erfc: Error function and complementary error function.
processes. wait: Awaits completion of background

storage. compress: Compress data for .
compress: Compress data for storage. . • •

pack, pcat, unpack: Compresses and expands files.
scsi: Small computer systems interface.

cat: Concatenates and displays files.
conditions. test: Tests • • . •

system. config: Configures a XENIX
cmos: Displays and sets the configuration data base.

hwconfig: Read the configuration information.
/mapscm. mapstr, convkey~ C'onfigure monitor scree':!!

mapchan: Configure tty device mapping.
config: Configures a XENIX system.

spooling system. Ipadmin: Configures the lineprinter
an out-going terminal line connection. dial: Establishes
Returns a character to the console buffer. ungetch:
cputs: Puts a string to the console.

console: System console device.

system(S)
time(CP)
chroot(ADM)
at(C)
cron(C)
micnet(F)
help(CP)
Intro(C)
remote(C)
xargs(C)
fstab(F)
Intro(CT)
Intro(CP)
cdc(CP)
comm(C)
ipcs(ADM)
stdipc(S)
dircmp(C)
sdiff(C)
bdiff(C)
diskcp(C)
dift3(C)
cmp(C)
diff(C)
sccsdiff(CP)
regexp(S)
terminfo(F)
cc(CP)
tic(C)
yacc(CP)
regex(S)
regcmp(CP)
erf(S)
wait(C)
compress(C)
compress(C)
pack(C)
scsi(HW)
cat(C)
test(C)
config(ADM)
cmos(HW)
hwconfig(ADM)

mapchan(M)
config(ADM)
Ipadmin(ADM)
dial(S)
ungetch(DOS)
cputs(DOS)
console(M)

kbhit: Checks the console for a keystroke.
cscanf: Converts and formats console input.

messages: Description of system console messages.
putch: Writes a character to the console.

to printer attached to a serial
printer attached to a serial!

cw, checkcw, cwcheck: Prepares
mkfs:

commands. xargs:
nroff/troff, tbl, and eqn

debugging on uutry: try to
ev _block: Wait until the queue

definitions for eqn. eqnchar:
Ie: Lists directory

Is: Gives information about

console: System console device.
console /print file •••••
consoleprint: Print file to
constant-width text for troff.
Constructs a file system. • . •
Constructs and executes . • • •
constructs. deroff: Removes
contact remote system with
contains an event.
Contains special character
contents in columns.
contents of directories.

1: Lists information about contents of directory.
Splits files according to context. csplit:

UUCP control files. uuinstall: Administers
init, inir: Process control initialization.

msgctl: Provides message control operations.
uadmin: administrative control. •.••.

ioctl: Controls character devices.
fcntl: Controls open files. • • •

semctl: Controls semaphore operations.
operations. shmctl: Controls shared memory

Permuted Index

kbhit(DOS)
cscanf(DOS)
messages(M)
putch(DOS)

• console(M)
consoleprint(ADM)
consoleprint(ADM)
cw(CT)
mkfs(ADM)
xargs(C)
deroff(CT)
uutry(ADM)
ev _block(S)
eqnchar(CT)
Ie(C)
Is(C)
1(C)
csplit(C)
uuinstall(ADM)
init(M)
msgct1(S)
uadmin(S)
ioct1(S)
fcntl(S)
semctl(S)

uucp status inquiry and job control. uustat: ••••••••
shmctl(S)
uustat(C)
conv(S) Translates characters. conv, toupper, tolower, toascii:

term: Conventional names.
fcvt, gcvt: Performs output conversions. ecvt, .••••

format. coffconv: Convert 386 COFF files to XENIX
and human-readable/ deco, enco: Convert between imPRESS format

format. catimp: Convert C/ A/T files to imPRESS
format. dviimp: Convert DVI files to imPRESS

into terminfo/ capinfo: convert termcap descriptions
double-precision/ strtod, atof: Converts a string to a

dd: Converts and copies a file.
input. cscanf: Converts and formats console

scanf, fscanf, sscanf: Converts and formats input.
libraries. ranlib: Converts archives to random

atof, atoi, atol: Converts ASCII to numbers.
and long/ 13tol,lto13: Converts between 3-byte integers

and base 64 ASCII. a64l, 164a: Converts between long integer
toupper, toascii: Classifies or converts characters. /tolower,

/gmtime, asctime, tzset: Converts date and time to ASCII.
characters. ltoa: Converts long integers to

uppercase. strupr: Converts lowercase characters to
ultoa: Converts numbers to characters.

itoa: Converts numbers to integers.
standard FORTRAN. ratfor: Converts Rational FORTRAN into

strtol, atol, atoi: Converts string to integer.

term(CT)
ecvt(S)
coffconv(M)
deco(CT)

• catimp(CT)
dviimp(CT)
capinfo(C)
strtod(S)
dd(C)
cscanf(DOS)
scanf(S)
ranlib(CP)
atof(S)

• 13tol(S)
a64I(S)
ctype(S)

• ctime(S)
Itoa(DOS)

• strupr(DOS)
• ultoa(DOS)

itoa(DOS)
ratfor(CP)
strtol(S)

1-9

Permuted Index

fonnat. iprint: Converts text files to DVI
units: Converts units.

lowercase. strlwr: Converts uppercase characters to
screen/ mapkey, mapscm, mapstr, convkey: Configure monitor

dd: Converts and copies a file. ..••.•.
address. movedata: Copies bytes from a specific

cpio: Copies file archives in and out.
systems. rcp: Copies files across XENIX

cp: Copies files. •.••••
copy: Copies groups of files.

diskcp, diskcmp: Copies or compares floppy disks.
copy: Copies groups of files.

Public XENIX-to-XENIX file copy. uuto, uupick:
core: Fonnat of core image file.

core: Fonnat of core image file.
asktime: Prompts for the correct time of day.

explain: Corrects language usage.
atan2: Perfonns/ sin, cos, tan, asin, acos, atan,

functions. sinh, cosh, tanh: Perfonns hyperbolic
sum: Calculates checksum and counts blocks in a file.

characters. wc: Counts lines, words and
cp: Copies files.

cpio: Fonnat of cpio archive.
and out. cpio: Copies file archives in

cpio: Fonnat of cpio archive.
preprocessor. cpp: The C language

cprintf: Fonnats output.
c1ock~ Reports CPU time used.

Flushes block I/O and halts the CPU. shutdn:
console. cputs: Puts a string to the

rewrites an existing one. creat: Creates a new file or
file. tmpnam, tempnam: Creates a name for a temporary

mkdir: Creates a new directory. . .
an existing one. creat: Creates a new file or rewrites

fork: Creates a new process.
spawnl, spawnvp: Creates a new process.

ctags: Creates a tags file.
tee: Creates a tee in a pipe.

tmpfile: Creates a temporary file.
from C source. mkstr: Creates an error message file

profile. profil: Creates an execution time
semaphore. creatsem: Creates an instance of a binary

pipe: Creates an interprocess pipe.
files. admin: Creates and administers srrs

/Scans fixed disk for flaws and creates bad track table.

1-10

umask: Sets and gets file creation mask.
a binary semaphore. creatsem: Creates an instance of

listing. cref: Makes a cross-reference
specified times. cron: Executes commands at

intro: Introduction to DOS cross development functions.
dosld: XENIX to MS-DOS cross linker. . .•..•

iprint(C)
units(C)

· strlwr(DOS)
mapkey(M)
dd(C)
movedata(DOS)
cpio(C)
rcp(C)
cp(C)
copy(C)

• diskcp(C)
copy(C)
uuto(C)
core(F)
core(F)
asktime(ADM)
explain(CT)
trig(S)
sinh(S)
sum(C)
wc(C)
cp(C)
cpio(F)
cpio(C)
cpio(F)
cpp(CP)
cprintf(DOS)
c1ock(S)
shutdn(S)
cputs(DOS)
createS)
tmpnam(S)
mkdir(DOS)
createS)
fork(S)
spawn(DOS)
ctags(CP)
tee(C)
tmpfile(S)
mkstr(CP)
profileS)
creatsem(S)
pipe(S)
?fi!!!!..'l(CP)
badtrk(ADM)
umask(S)

• creatsem(S)
cref(CP)
cron(C)
intro(DOS)
dosld(CP)

cxref: Generates C program
cref: Makes a

xref:
console input.

interpreter with C-like syntax.
to context.

terminal

for a terminal.

cross-reference. •••••
cross-reference listing.
Cross-references C programs.
cscanf: Converts and formats
csh: Invokes a shell command
csplit: Splits files according
ct: spawn getty to a remote
ctags: Creates a tags file.
ctermid: Generates a filename

asctime, tzset: Converts date/ ctime, localtime, gmtime,
is lower, isdigit, isxdigit,/ ctype, isalpha, isupper,

cu: Calls another XENIX system.
ev ~etemask: Return the current event mask.

pointer. tell: Gets the current position of the file
activity. sact: Prints current sces file editing

the slot in the utmp file of the current user. ttyslot: Finds
getcwd: Get the pathname of current working directory.

uname: Prints the name of the current XENIX system.
uname: Gets name of current XENIX system.

/Returns the number of events currently in the queue.
ev _flush: Discard all events currently in the queue.

cursor functions. curses: Performs screen and
curses: Performs screen and cursor functions. • • • • • •
spline: Interpolates smooth curve. •••••••••

the user. cuserid: Gets the login name of
each line of a file. cut: Cuts out selected fields of
line of a file. cut: Cuts out selected fields of each

constant-width text for troff. cw, checkcw, cwcheck: Prepares

Permuted Index

cxref(CP)
cref(CP)
xref(CP)
cscanf(DOS)
csh(C)
csplit(C)
ct(C)
ctags(CP)
ctermid(S)
ctime(S)
ctype(S)
cu(C)
ev~temsk(S)

tell(DOS)
sact(CP)
ttyslot(S)
getcwd(S)
uname(C)
uname(S)
ev _count(S)
ev _flush(S)
curses(S)
curses(S)
spline(CP)
cuserid(S)
cut(CT)
cut(CT)

• cw(CT)
text for troff. cw, checkcw, cwcheck: Prepares constant -width

cross-reference. cxref: Generates C program
daemon.mn: Micnet mailer daemon. ••••.••••••

• cw(CT)
cxref(CP)
daemon.rnn(M)
daemon.rnn(M)

sdwaitv: Synchronizes shared
termcap: Terminal capability
terminfo: terminal capability

and sets the configuration
compress: Compress

brkctl: Allocates
/sgetl: Accesses long integer
plock: Lock process, text, or

prof: Displays profile
execseg: makes a

call. stat:
sbrk, brk: Changes

Synchronizes access to a shared
Attaches and detaches a shared
rdchk: Checks to see if there is

types: Primitive system
backups schedule:

firstkey, nextkey: Performs
terminfo: terminal description

daemon.mn: Micnet mailer daemon.
data access. sdgetv,
data base. • •••••
data base.
data base. cmos: Displays
data for storage. • . • • •
data in a far segment.
data in a machine-independent.
data in memory.
data. • •.••••••
data region executable.
Data returned by stat system
data segment space allocation.
data segment. sdenter, sdleave:
data segment. sdget, sdfree:
data to be read. •.•••.••
data types. • .•.••••
Database for automated system
database functions. /delete,
database. • .••••.••

sdgetv(S)
termcap(M)
terminfo(M)
cmos(HW)
compress(C)
brkct1(S)
sputl(S)
plock(S)
prof(CP)
execseg(S)
stat(F)
sbrk(S)
sdenter(S)
sdget(S)
rdchk(S)
types(F)
schedule(ADM)
dbm(S)
terminfo(S)

1-11

Permuted Index

tput: Queries the tenninfo database. • • . • • . . tput(C)
/gllltime, asctime, tzset: Converts date and time to ASCII. ctime(S)

date: Prints and sets the date. .••..•• date(C)
date: Prints and sets the date. date(C)

time, ftime: Gets time and date. ..•..•.• time(S)
the access and modification dates of files. /Changes settime(ADM)

sddate: Prints and sets backup dates. •.••••... sddate(C)
The system real-time (time of day) clock. clock: clock(F)
the system real-time (time of day) clock. setclock: Sets setclock(ADM)

Prompts for the correct time of day. asktime: • • • • . • asktime(ADM)
firstkey, nextkey: Perfonns/ dbminit, fetch, store, delete, dbm(S)

precision calculator. dc: Invokes an arbitrary dc(C)
dd: Converts and copies a file. dd(C)

devices. assign, deassign: Assigns and deassigns • assign(C)
assign, deassign: Assigns and deassigns devices. assign(C)

adb: Invokes a general-purpose debugger. adb(CP)
fsdb: File system debugger. fsdb(ADM)

sdb: Invokes symbolic debugger. sdb(CP)
to contact remote system with debugging on uutry: try uutry(ADM)

imPRESS fonnat and/ deco, enco: Convert between deco(CT)
transmission via mail uudecode: decode a binary file for uuencode(C)

fdswap: Swaps default boot floppy drive. fdswap(ADM)
micnet: The Micnet default commands file. micnet(F)

infonnation directory. default: Default program default(F)
defopen, defread: Reads default entries. defopen(S)

directory. default: Default program infonnation default(F)
Contains special character definitions for eqn. eqnchar: eqnchar(CT)

entries. defopen, defread: Reads default defopen(S)
defopen, defread: Reads default entries. defopen(S)

Perfonns/ dbminit, fetch, store, delete, firstkey, nextkey: dbm(S)
nndir: Deletes a directory. nndir(DOS)

pathname. dirname: Delivers directory part of dirname(C)
file. tail: Delivers the last part of a tail(C)

delta: Makes a delta (change) to an SCCS file. delta(CP)
delta. cdc: Changes the delta commentary of an SCCS cdc(CP)

nndel: Removes a delta from an SCCS file. . . • • . nndel(CP)
an SCCS file. delta: Makes a delta (change) to . delta(CP)

the delta commentary of an SCCS delta. cdc: Changes cdc(CP)
comb: Combines,SCCS deltas. . • . . • . • • comb(CP)

tenninal. mesg: Pennits or denies messages sent to a mesg(C)
tbl, and eqn constructs. deroff: Removes nroff/troff, deroff(CT)

tenninfo: tenninal description database. tenninfo(S)
Machine: Description of host machine. machine(HW)

messages. messages: Description of system consolp. !!!,=,ss~ges(M)

segread: command description. . • • • . . • . segread(DOS)
capinfo: convert tenncap descriptions into tenninfo/ . . capinfo(C)

descriptions into tenninfo descriptions. /convert tenncap capinfo(C)
close: Closes a file descriptor. ..•....• close(S)

dup2: Duplicates an open file descriptor. dup, • . . • . • dupeS)
sdget, sdfree: Attaches and detaches a shared data segment. sdget(S)

file. access: Detennines accessibility of a. accesseS)

1-12

dtype: Determines disk type. • • . •
eof: Determines end-of-file.

hypot, cabs: Determines Euclidean distance.
file: Determines file type.

ferror, feof, clearerr, fileno: Determines stream status.
whodo: Determines who is doing what.

console: System console device.
error: Kernel error output device. ••••••

/Default backup device information.
master: Master device information table.

Ip, IpO, Ip I, Ip2: Line printer device interfaces.
isatty: Checks for a character device. •••••

mapchan: Format of tty device mapping files.
mapchan: Configure tty device mapping.

devnm: Identifies device name.
systty: System maintenance

ev ~etdev: Gets a list of
ev ~indev: include/exclude

ioctl: Controls character
deassign: Assigns and deassigns

event queue and all associated
font and video mode for a video

device. • •••.
devices feeding an event queue.
devices for event input.
devices. • .••.••.
devices. assign, •.•••
devices. ev _close: Close the
device. vidi: Sets the . • •
devnm: Identifies device name.

blocks. df: Report number of free disk
dial: Dials a modem.

terminal line connection. dial: Establishes an out-going
dial: Dials a modem. •.••.

uuchat: dials a modem. ••••••
diction: Checks language usage.
diff: Compares two text files.
diff3: Compares three files.

diffrnk: Marks differences between files.
between files. diffink: Marks differences

dir: Format of a directory.
dircmp: Compares directories.

uucheck: check the uucp directories and permissions file
dircmp: Compares directories.

mv: Moves or renames files and directories.
directories.
directories.
directories. Is: Gives

Permuted Index

dtype(C)
eof(DOS)
hypot(S)
file(C)
ferror(S)
whodo(C)
console(M)
error(M)
archive(F)
master(F)
Ip(HW)
isatty(DOS)
mapchan(F)
mapchan(M)
devnm(C)
systty(M)

• ev ~etdev(S)
ev ~indev(S)
ioctl(S)
assign(C)
eV310se(S)
vidi(C)
devnm(C)
df(C)
dial(ADM)
dial(S)
dial(ADM)
dial(ADM)

• diction(CT)
diff(C)
diff3(C)
diffrnk(CT)
diffrnk(CT)
dir(F)
dircmp(C)
uucheck(ADM)
dircmp(C)
mv(C)
rm(C)
rmdir(C)
Is(C)

rm, rmdir: Removes files or
rmdir: Removes

infoTIDation about contents of
cd: Changes working

chdir: Changes the working
chroot: Changes the root

uuclean: uucp spool
Ie: Lists

dir: Format of a
file. getdents: read

dirent: file system independent
unlink: Removes

chroot: Changes root

directory.
directory.
directory.

••••• cd(C)

directory clean-up •••••
directory contents in columns.
directory. • ••••••
directory entries and put in a
directory entry.
directory entry.
directory for command.

chdir(S)
chroot(S)
uuclean(ADM)
Ie(C)
dir(F)
getdents(S)
dirent(F)
unlink(S)
chroot(ADM)

1-l3

Permuted Index

directory for work.
directory.
directory.
directory.
directory name.
directory names from pathnames.
directory operations.
directory, or a special or • •
directory part of pathname.
directory. • ••••••
directory. • ••••••
directory. chmod: Changes the
directory. default:
directory. getcwd: Get
directory. 1: Lists
dirent: file system independent
dirname: Delivers directory part
disable: Turns off terminals and
disables process accounting.
Discard all events currently in
discipline. /Sets terminal
disk block size.
disk blocks. • • . • • • • •

uucico(C)
mkdir(C)
mkdir(DOS)
mvdir(C)
pwd(C)

• basename(C)
directory(S)
mknod(S)
dirname(C)
rename(DOS)
rmdir(DOS)
chmod(C)
default(F)
getcwd(S)
1(C)
dirent(F)

• dirname(C)
disable(C)
acct(S)
ev _flusheS)
getty(M)
cmchk(C)
df(C)
dparam(ADM)

uucico: Scan the spool
mkdir: Makes a

mkdir: Creates a new
mvdir: Moves a

pwd: Prints working
basename: Removes

c1osedir: Performs
ordinary file. mknod: Makes a

dirname: Delivers
rename: renames a file or

rmdir: Deletes a
access permissions of a file or
Default program information

the pathname of current working
information about contents of

directory entry.
of pathname.

printers.
acct: Enables or

the queue. ev _flush:
type, modes, speed, and line

cmchk: Reports hard
df: Report number of free

dparam: Displays/changes hard
hd: Internal hard

track! badtrk: Scans fixed
fdisk: Maintain

dtype: Determines
du: Summarizes

floppy disks. diskcp,
compares floppy disks.

format: format floppy
Copies or compares floppy

umount:
zcat:

vedit: Invokes a screen-oriented
configuration data base. cmos:

cat: Concatenates and
format. hd:

od:
system activity. uptime:

disk characteristics.
disk drive. ••••• hd(HW)
disk for flaws and creates bad
disk partitions. • • • • •
disk type. •••••••
disk usage. • ••••••
diskcmp: Copies or compares
diskcp, diskcmp: Copies or
disks. • •••••••
disks. diskcp, diskcmp:
Dismounts a file structure.
Display a stored file.

badtrk(ADM)
fdisk(ADM)
dtype(C)
du(C)
diskcp(C)
diskcp(C)
format(C)
diskcp(C)
umount(ADM)
compress(C)

••••• vi(C) display editor. vi, view,
Displays and sets the
displays files. •••••
Displays files in hexadecimal
Displays files in octal format.
Displays information about

is on the system a.lld '.:vhat \v: Displays information about 'IJho
prof: Displays profile data.

~ .. ,.,...,..,. ~ 1-1 1-~_ _. ~1 _ L" .. :L •• T"\!~~_1~_"~ __ 1 __ ~,~,1 ~ I'"

_A_vUu.t.UJ.v UllJ.Cll.) .UJ.'--'IJI •. HUt. J.JH)'pJ.ay~ ~t:at;l,..LCU pc:ut~ 01

characteristics. dparam: Displays/ changes hard disk
mail: Sends, reads or disposes of mail. • • • •

cabs: Determines Euclidean distance. hypot,
lcong48: Generates uniformly distributed. srand48, seed48,

divvy -b block_device -c. c/
mm macros. mm: Prints documents formatted with the

mmt: Typesets documents. • • • • • • •

1-14

cmos(HW)
cat(C)
hd(C)
od(C)
uptime(C)

· y;(C)
prof(CP)
ftw:(CP)
dparam(ADM)
mai1(C)
hypot(S)
drand48(S)
divvy(ADM)
mm(CT)
mmt(CT)

Permuted Index

Analyzes characteristics of a document. style: •••..•• style(CT)
whodo(C)
intro(DOS)

whodo: Determines who is doing what. • • • • • • . • • •
intro: Introduction to DOS cross development functions.

dosexterr: Gets DOS error messages. dosexter(DOS)
dos(C)
bdos(DOS)
intdos(DOS)
intdosx(DOS)
dosexter(DOS)
dosld(CP)
dos(C)

dosls, dosrm, dosrmdir: Access DOS files.
bdos: Invokes a DOS system call.

intdos: Invokes a DOS system call.
intdosx: Invokes a DOS system call.

messages. dosexterr: Gets DOS error
linker. dosld: XENIX to MS-DOS cross

DOS files. dosls, dosrm, dosrmdir: Access
files. dosls, dosrm, dosrmdir: Access DOS

dosls, dosrm, dosrmdir: Access DOS files.
/atof: Converts a string to a double-precision number.

disk characteristics. dparam: Displays/changes hard
hd: Internal hard disk drive. •••••••••

Swaps default boot floppy drive. fdswap: ••••••
utility. sysadmsh: Menu driven system administration

sxt: Pseudo-device driver. • -. . • • • • • •
term: Terminal driving tables for nroff.

format.
system backup.

backup: Incremental
dump: Incremental

files on a backup archive.
file. tapedump:
file descriptor.

descriptor. dup,
descriptor. dup, dup2:

dviimp: Convert
iprint: Converts text files to

imPRESS format.

getche: Gets and
echo:

output conversions.

dtype: Determines disk type.
du: Summarizes disk usage.
dump: Incremental dump tape
dump: Performs incremental file
dump tape format.
dump tape format. ••..•
dumpdir: Prints the names of •
Dumps magnetic tape to output
dup, dup2: Duplicates an open
dup2: Duplicates an open file
Duplicates an open file
DVI files to imPRESS format.
DVIformat.
dviimp: Convert DVI files to
echo: Echoes arguments.
echoes a character. • •
Echoes arguments.
ecvt, fcvt, gcvt: Performs
ed: Invokes the text editor.

program. end, etext, edata: Last locations in
sact: Prints current SCCS file editing activity.

ed: Invokes the text editor.
ex: Invokes a text editor.

ld: Invokes the link editor.
ld: Invokes the link editor.

Format of assembler and link editor output. a.out:
the stream editor. sed: Invokes

a screen-oriented display editor. /view, vedit: Invokes
effective user, real group, and effective group IDs. /real user,

/getgid, getegid: Gets real user, effective user, real group, and/
color, monochrome, ega,. /tty[Ol-n], • • . • • •

dos(C)
dos(C)
strtod(S)
dparam(ADM)
hd(HW)
fdswap(ADM)
sysadmsh(ADM)
sxt(M)
term(F)
dtype(C)
du(C)
dump(F)

• dump(C)
backup(F)
dump(F)
dumpdir(C)
tapedump(C)
dupeS)
dupeS)
dupeS)
dviimp(CT)
iprint(C)
dviimp(CT)
echo(C)
getche(DOS)
echo(C)
ecvt(S)
ed(C)
end(S)
sact(CP)
ed(C)
exeC)
Id(CP)
Id(M)
a.out(F)
sed(C)
vi(C)
getuid(S)
getuid(S)
screen(HW)

1-15

Permuted Index

for a pattern. grep, egrep, fgrep: Searches a file
input. soelim: Eliminates .so's from nroff

line printers. enable: Turns on terminals and
accounting. acct: Enables or disables process

format and human-readable/ deco, enco: Convert between imPRESS
transmission via mail uuencode: encode a binary file for

makekey: Generates an encryption key.
locations in program. end, etext, edata: Last . • •

/getgrgid, getgrnam, setgrent, endgrent: Get group file entry.
eof: Determines end-of-file.•

/getpwuid, getpwnam, setpwent, endpwent: Gets password file/
utmp file entry. endutent, utmpname: Accesses

getdents: read directory entries and put in a file.
defopen, defread: Reads default entries. .•...

xlist, fxlist: Gets name list entries from files.
nlist: Gets entries from name list.

wtmp: Formats of utmp and wtmp entries. utmp,
putpwent: Writes a password file entry. ..••.

unlink: Removes directory entry. ••••.
system independent directory entry. dirent: file

utmpname: Accesses utmp file entry. endutent,
endgrent: Get group file entry. /getgmam, setgrent,

endpwent: Gets password file entry. /getpwnam, setpwent,
command execution. env: Sets environment for

environ: The user environment.
profile: Sets up an environment at login time.
environ: The user environment. •....•

execution. env: Sets environment for command
getenv: Gets value for environment name. . .

putenv: Changes or adds value to environment.•.
TZ: Time zone environment variable. . . .

eof: Determines end-of-file.
Removes nroff/troff, tbl, and eqn constructs. deroff:

Formats mathematical text fori eqn, neqn, checkeq, eqncheck:
character definitions for eqn. eqnchar: Contains special
text fori eqn, neqn, checkeq, eqncheck: Formats mathematical

character definitions for eqn. eqnchar: Contains special
complementary error function. erf, erfc: Error function and

complementary error/ erf, erfc: Error function and
perror, sys_errlist, sys_nerr, ermo: Sends system error/

error function. erf, erfc: Error function and complementary
Error function and complementa..rlj error function. erf, erfc: . .

device. error: Kernel error output
~Cl1rc~. illlc;ti": Creates ail error iHei>i>age lilt: llUUl C

error messages. •.••.
error messages. /sys_errlist,
error numbers. /system
error output device.
error-checking filesystem backup
Error-handling function. . .

grep(C)
soelim(CT)
enable(C)
acct(S)

· deco(CT)
uuencode(C)
makekey(M)
end(S)
getgrent(S)
eof(DOS)
getpwent(S)
getut(S)
getdents(S)
defopen(S)
xlist(S)
nlist(S)
utmp(F)
putpwent(S)
unlink(S)
dirent(F)
getut(S)
getgrent(S)
getpwent(S)
env(C)
environ(M)
profile(M)
environ(M)
env(C)
getenv(S)
putenv(S)
tz(M)
eof(DOS)
deroff(CT)
eqn(CT)
eqnchar(CT)

• eqn(CT)
eqnchar(CT)
erf(S)
erf(S)
perror(S)
erf(S)
_.....etC"',
vU\->j

error(M)
mksrr(CFJ
dosexter(DOS)
perror(S)
Intro(S)
error(M)

dosexterr: Gets DOS
sys_nerr, ermo: Sends system
services, library routines and

error: Kernel
fsave: Interactive,

matherr:
hashcheck: Finds spelling

• fsave(ADM)
matherr(S)
spell(CT) errors. /hashmake, spellin, . • • •

1-16

terminal line connection. dial: Establishes an out-going
setmnt: Establishes /etc/mnttab table.

setmnt: Establishes /etc/mnttab table. ..•••
program. end, etext, edata: Last locations in

hypot, cabs: Determines Euclidean distance.
expression. expr: Evaluates arguments as an •
contains an event. ev _block: Wait until the queue

and all associated devices. ev _close: Close the event queue
events currently in the queue. ev _count: Returns the number of

ev _read: Read the next event in the queue.
include/exclude devices for event input. ev....gindev:

ev _init: Invokes the event manager.
ev....getemask: Return the current event mask. . • •

ev _setemask: Sets event mask. • • •
ev_pop: Pop the next event off the queue.

devices. ev _close: Close the event queue and all associated
ev _suspend: Suspends an event queue. ..•.••

ev _open: Opens an event queue for input. . • .
a list of devices feeding an event queue. ev....getdev: Gets

Wait until the queue contains an event. ev _block: •••••
ev _count: Returns the number of events currently in the queue.

ev _flush: Discard all events currently in the queue.
currently in the queue. ev _flush: Discard all events

devices feeding an event queue. ev....getdev: Gets a list of • •
event mask. ev....getemask: Return the current

devices for event input. ev....gindev: include/exclude
manager. ev _init: Invokes the event
for input. ev _open: Opens an event queue

the queue. ev _pop: Pop the next event off
the queue. ev _read: Read the next event in

queue. ev _resume: Restart a suspended
ev _setemask: Sets event mask.

queue. ev _suspend: Suspends an event
ex: Invokes a text editor.

execlp, execvp: Executes a/ execl, execv, execle, execve,
Executes a file. execl, execv, execle, execve, execlp, execvp:
execl, execv, exec1e, execve, exec1p, execvp: Executes a file.

executable. execseg: makes a data region •
fixhdr: Changes executable binary file headers.

hdr: Displays selected parts of executable binary files.
execseg: makes a data region executable. .•.••••

execle, execve, exec1p, execvp: Executes a file. execl, execv,
system: Executes a shell command.

int86: Executes an interrupt. • • . •
int86x: Executes an interrupt. • • • •

XENIX. uux: Executes command on remote
time. at, batch: Executes commands at a later

times. cron: Executes commands at specified
XENIX system. remote: Executes commands on a remote

xargs: Constructs and executes commands.
regex, regcmp: Compiles and executes regular expressions. •

Permuted Index

dial(S)
setrnnt(ADM)
setrnnt(ADM)
end(S)
hypot(S)
expr(C)
ev _block(S)
ev _close(S)

• ev_count(S)
ev_read(S)
ev....gindev(S)
ev_init(S)
ev....gtemsk(S)
ev _stemsk(S)
ev_pop(S)
ev _close(S)
ev_susp(S)
ev_open(S)
ev....getdev(S)
ev _block(S)
eV30unt(S)
ev _flusheS)
ev _flusheS)
ev....getdev(S)

• ev....gtemsk(S)
ev....gindev(S)
eV_init(S)
ev_open(S)
ev_pop(S)
ev_read(S)

• ev _resume(S)
ev _stemsk(S)
ev_susp(S)
exeC)
exec(S)
exec(S)
exec(S)
execseg(S)
fixhdr(C)
hdr(CP)
execseg(S)
exec(S)
system(S)
int86(DOS)
int86x(DOS)
uux(C)
at(C)

• cron(C)
• remote(C)

xargs(C)
regex(S)

1-17

Permuted Index

nap: Suspends
sleep: Suspends
sleep: Suspends

monitor: Prepares
profil: Creates an

Sets environment for command
execvp: Executes a file. execl,

a file. execl, execv, exec1e,
execv, execle, execve, execlp,

lillie Links a new filename to an
a new file or rewrites an

process.
exit,

process.
false: Returns with a nonzero

true: Returns with a zero
Performs exponential,!

pcat, unpack: Compresses and
usage.

/log, pow, sqrt, log 1 0: Performs
number into a mantissa and an

expression.
routines. regexp: Regular

expr: Evaluates arguments as an
regcmp: Compiles regular

Compiles and executes regular
programs. xstr:

absolute value, floor,! floor,
of inter-process communication

factor:

execution for a short interval.
execution for an interval.
execution for an interval.
execution profile.
execution time profile.
execution. env:
execv, execle, execve, execlp,
execve, execlp, execvp: Executes
execvp: Executes a file. execl,
existing file.•
existing one. creat: Creates
exit, _exit: Terminates a •
_exit: Terminates a process.
exit: Terminates the calling
exit value. • •.•••
exit value. • ..••.•
exp, log, pow, sqrt, 10glO:
expands files. pack,
explain: Corrects language
exponential, logarithm, power,!
exponent. /Splits floating-point
expr: Evaluates arguments as an
expression compile and match
expression.
expressions.
expressions. regex, regcmp:
Extracts strings from C
fabs, ceil, fmod: Performs
facilities. !Reports the status
Factor a number. • •..•
factor: Factor a number. . • •
faliases: Micnet aliasing files.

exit value. false: Returns with a nonzero
abort: Generates an lOT fault. •.••...

streams. fclose, fcloseall: Closes
flushes a stream. fclose, fflush: Closes or

fclose, fcloseall: Closes streams.
fcntl: Controls open files.

conversions. ecvt, fcvt, gcvt: Performs output
fdisk: Maintain disk partitions.

fopen, freopen, fdopen: Opens a stream. .
floppy drive. fdswap: Swaps default boot

Ito machine related miscellaneous features and files.
Introduction to miscellaneous features and files. intro:

/Gets a list of devices feeding an event queue.

1-18

Determines stream/ ferror, feof, clearerr, fileno:
Determines stream status. ferror, feof, clearerr, fileno:

nextkey: Performs/ dbminit, fetch, store, delete, firstkey,
stream. fclose, fflush: Closes or flushes a

character from a stream. fgetc, fgetchar: Gets a
word from a/ getc, getchar, fgetc, getw: Gets character or

napeS)
sleep(C)
sleep(S)
monitor(S)
profileS)
env(C)
exec(S)

• exec(S)
exec(S)
link(S)
createS)
exit(S)
exit(S)
exit(DOS)
false(C)
true(C)
exp(S)
pack(C)
explain(CT)
exp(S)
frexp(S)
expr(C)
regexp(S)
expr(C)
regcmp(CP)
regex(S)
xstr(CP)
floor(S)
ipcs(ADM)
factor(C)
factor(C)
aliases(M)
false(C)
abort(S)
fclose(DOS)
fclose(S)
fclose(DOS)
fcntl(S)
ecvt(S)
fdisk(ADM)
fopen(S)
fdswap(ADM)
Intro(HW)
Intro(M)
ev ~etdev(S)
ferror(S)
ferror(S)
dbm(S)
fclose(S)
fgetc(DOS)
getc(S)

a stream. fgetc, fgetchar: Gets a character from
stream. gets, fgets: Gets a string from a

pattern. grep, egrep, fgrep: Searches a file for a
Compares files too large for diff. bdiff:•.

cut: Cuts out selected fields of each line of a file.
of file systems processed by fsck. checklist: List

times. utime: Sets file access and modification
cpio: Copies file archives in and out.

chmod: Changes mode of a file.
chsize: Changes the size of a file.

uncompress: Uncompress a stored file.
zcat: Display a stored file.

uupick: Public XEN1X-to-XEN1X file copy. uuto,
core: Format of core image file. ••••.

umask: Sets and gets file creation mask.
ctags: Creates a tags file.

dd: Converts and copies a file.
close: Closes a file descriptor.

dup, dup2: Duplicates an open file descriptor.
file: Determines file type.

sact: Prints current SCCS file editing activity.
putpwent: Writes a password file entry. •....•

utmpname: Accesses utmp file entry. endutent,
setgrent, endgrent: Get group file entry. /getgrgid, getgrnam,

endpwent: Gets password file entry. /getpwnam, setpwent,
filelength: Gets the length of a file. ...••. • . •
grep, egrep, fgrep: Searches a file for a pattern. . • . •

open: Opens file for reading or writing.
writing. sopen: Opens a file for shared reading and

uudecode: decode a binary file for transmission via mail
uuencode: encode a binary file for transmission via mail

. ar: Archive file format.
intro: Introduction to file formats. . • • •

mkstr: Creates an error message
group: Format of the group

grpcheck: Checks group
Changes executable binary

split: Splits a
In: Makes a link to a

file from C source.
file. .••••.
file.
file headers. fixhdr:
file into pieces.
file.

mem, kmem: Memory image file.
nl: Adds line numbers to a file.

null: The null file.
/Finds the slot in the utmp file of the current user.

rename: renames a file or directory.
the access permissions of a file or directory. /Changes

one. creat: Creates a new file or rewrites an existing
passwd: The password file. .•••••••

/ftell, rewind: Repositions a file pointer in a stream.
lseek: Moves read/write file pointer. • . •

Gets the current position of the file pointer. tell:
prs: Prints an SCCS file. ••...•

Permuted Index

fgetc(DOS)
gets(S)
grep(C)
bdiff(C)
cut(CT)
checklist(F)
utime(S)
cpio(C)
chmod(S)
chsize(S)
compress(C)
compress(C)
uuto(C)
core(F)
umask(S)
ctags(CP)
dd(C)
c1ose(S)
dupeS)
file(C)
sact(CP)
putpwent(S)
getut(S)
getgrent(S)
getpwent(S)
fileleng(DOS)
grep(C)
open(S)
sopen(DOS)
uuencode(C)
uuencode(C)
ar(F)
Intro(F)
mkstr(CP)
group(M)
grpcheck(C)
fixhdr(C)
split(C)
In(C)
mem(M)
nl(C)
nul1(F)
ttyslot(S)
rename(DOS)
chmod(C)
createS)
passwd(F)
fseek(S)
lseek(S)
tell(DOS)
prs(CP)

1-19

Permuted Index

pwcheck: Checks password file. ••••••.•••
read: Reads from a file. ••••••..••

locking: Locks or unlocks a file region for reading or/
sccsfile: Format of an SCCS file. .••.•

pwcheck(C)
read(S)
10cking(S)
sccsfile(F)

stat, fstat: Gets file status.
mount: Mounts a file structure.

umount: Dismounts a file structure.
backup: Performs incremental file system backup.

dump: Performs incremental file system backup.

• • • • • stateS)
mount(ADM)
umount(ADM)
backup(C)

files. sysadmin: Performs file system backups and restores
fsdb: File system debugger. • • • .

volume. file system: Format of a system
directory entry. dirent: file system independent

fstatfs: get file system information.
statfs: get file system information.

mkfs: Constructs a file system. • . • • •
commands. fstab: File system mount and check
mount: Mounts a file system.

quot: Summarizes fiie system ownership.
restore, restor: Invokes incremental file system restorer.

ustat: Gets file system statistics. •••••
mnttab: Format of mounted file system table. . • •

umount: Unmounts a file system.
haltsys, reboot: Closes out the file systems and shuts down the/

fsck: Checks and repairs file systems. ••••.
fsck. checklist: List of file systems processed by

tmpfile: Creates a temporary file. •.... • • • .
serial! consoleprint: Print file to printer attached to a

tsort: Sorts a file topologically.
the scheduler for the uucp file transport program uusched:

ftw: Walks a file tree.
ttys: Login terminals file.

file: Determines file type.
val: Validates an SCCS file.

write: Writes to a file.
Determines accessibility of a file. access:

Format of per-process accounting file. acct:
for and processes a pattern in a file. awk: Searches

troffwidth files and catab file. charmap: Generate
Changes the owner and group of a file. chown:

dump(C)
• sysadmin(ADM)

fsdb(ADM)
filesystem(F)
dirent(F)
statfs(S)
statfs(S)
mkfs(ADM)
fstab(F)
mount(S)
quot(C)
restore(C)
ustat(S)
mnttab(F)
umount(S)

• haltsys(ADM)
fsck(ADM)
checklist(F)
tmpfile(S)
conso1eprint(ADM
tsort(CP)
uusched(ADM)
ftw(S)
ttys(F)
file(C)
val(CP)
write(S)
accesseS)
acct(F)
awk(C)
charmap(CT)
chown(S)

user login shell in password file. chsh: changes
umask: Sets file-creation mode mask.

fields of each line of a file. cut: Cuts out selected

••••• chsh(ADM)
umask(C)
cut(CT)

a delta (change) to an SCCS file. delta: Makes
execlp, execvp: Executes a file. /execv, execle, execve,

directory entries and put in a file. getdents: read
Alternative login terminals file. inittab: ••••..

file. filelength: Gets the length of a
a new filename to an existing file. link: Links ••.•.•

The Micnet default commands file. micnet: .•.•.••
or a special or ordinary file. mknod: Makes a directory,

1-20

delta.(CP)
exec(S)
getdents(S)
inittab(F)
fileleng(DOS)
link(S)
micnet(F)
mknod(S)

ctermid: Generates a filename for a terminal.
mktemp: Makes a unique filename. • • . • • • •

link: Links a new filename to an existing file.
Changes the format of a text file. newform:
status. ferror, feof, clearerr, fileno: Determines stream

Removes a delta from an SCCS file. rmdel: • • • • • •
csplit: Splits files according to context.
rcp: Copies files across XENIX systems.

faliases: Micnet aliasing files. •••••
charmap: Generate troff width files and catab file.

mv: Moves or renames files and directories.
bfs: Scans big files.

cat: Concatenates and displays files.
cmp: Compares two files.

copy: Copies groups of files.
cp: Copies files.

difl3: Compares three files.
diff. Compares two text files.

fcnt1: Controls open files.
find: Finds files.

translate: Translates files from one format to another
hd: Displays files in hexadecimal fonnat.
od: Displays files in octal format.

mknod: Builds special files. ••.•••••••
dumpdir: Prints the names of files on a backup archive.

imprint: Prints text files on an IMAGEN printer.
imprint: print text files on an IMAGEN printer.

pr: Prints files on the standard output.
queue. ipr, oldipr: Put files onto the IMAGEN printer

rm, rmdir: Removes files or directories.
paste: Merges lines of files. •.•••

sdiff. Compares files side-by-side.
sort: Sorts and merges files.

tar: Archives files.
iprint: Converts text files to DVI format.

catimp: Convert C/Arr files to imPRESS format.
dviimp: Convert DVI files to imPRESS format.

for printing. lpr: Sends files to the lineprinter queue
coffconv: Convert 386 COFF files to XENIX format.

bdiff: Compares files too large for diff. • • • •
control files. uuinstall: Administers UUCP

what: Identifies files. •••••••••
and prints process accounting files. acctcom: Searches for

Creates and administers SCCS files. admin: •..••••
Compares two versions of an SCCS file. sccsdiff: ••••.•

lines common to two sorted files. comm: Selects or'rejects
Marks differences between files. diffink: ..•••.

dosrm, dosrmdir: Access DOS files. dosls, • • •
parts of executable binary files. hdr: Displays selected

Permuted Index

ctermid(S)
mktemp(S)
link(S)
newform(C)
ferror(S)
rmdel(CP)
csplit(C)
rcp(C)
aliases(M)
charmap(CT)
mv(C)
bfs(C)
cat(C)
cmp(C)
copy(C)
cp(C)
difl3(C)
diff(C)
fcnt1(S)
find(C)
translate(C)
hd(C)
od(C)
mknod(C)
dumpdir(C)
imprint(C)
imprint(CT)
pr(C)
ipr(C)
rm(C)
paste(Cf)
sdiff(C)
sort(C)
tar(C)
iprint(C)
catimp(CT)
dviimp(Cf)
Ipr(C)
coffconv(M)
bdiff(C)
uuinstall(ADM)
what(C)
acctcom(ADM)
admin(CP)
sccsdiff(CP)
comm(C)
diffmk(CT)
dos(C)

to miscellaneous features and files. intro: Introduction . • • • .
hdr(CP)
Intro(M)
size(CP) Prints the size of an object file. size: .•••••.

1-21

Permuted Index

semaphores and record locking on
Format of tty device mapping

unpack: Compresses and expands
access and modification dates of
file system backups and restores

miscellaneous features and
top.next: The Micnet topology

printable strings in an object
checksum and counts blocks in a

Gets name list entries from
Interactive, error-checking

mnt: Mount a
The Micnet system identification

/Default information for mounting
Delivers the last part of a

Dumps magnetic tape to output
Format of compiled terminfo

Creates a name for a temporary
and modification times of a

Undoes a previous get of an SCCS
Reports repeated lines in a

uucp directories and permissions
col:

documents formatted with the
find:

hyphen:
finger:

look:
logname:

object library. lorder:
hashmake, spellin, hashcheck:

ttyname, isatty:
an object file. strings:

of the current user. ttyslot:
users.

dbminit, fetch, store, delete,
/Prints formatted output of a

bad track' table. badtrk: Scans
binary file headers.

badtrk: Scans fixed disk for
frexp, ldexp, modf: Splits

files. lockf: Provide
files. mapchan:
files. pack, pcat, • •
files. settime: Changes the
files. sysadmin: Performs
files. Ito machine related
files. top,
file. strings: Finds the
file. sum: Calculates
files. xlist, fxlist: •••••
filesystem backup fsave:
file system
file. systemid:
filesystems. •
file. tail:
file. tapedump:
file. terminfo: •
file. tmpnam, tempnam:
file. touch: Updates access
file. unget: •••••
file. uniq: ••••••
file uucheck: check the
Filters reverse linefeeds.
mm macros. mm: Prints
Finds files. •••••
Finds hyphenated words.
Finds information about users.
Finds lines in a sorted list.
Finds login name of user.
Finds ordering relation for an
Finds spelling errors. spell,
Finds the name of a terminal.
Finds the printable strings in
Finds the slot in the utmp file
finger: Finds information about
firstkey, nextkey: Performs/
varargs argument list.
fixed disk for flaws and creates
fixhdr: Changes executable
flaws and creates bad track!
floating-point number into at

Ifmod: Performs absolute value, floor, ceiling and reniainder/
Performs absolute value, floor,/ floor, fabs, ceil, fmod:

format formal floppy disks.
diskcmp: Copies or compares floppy disks. diskcp,

fdswap: Swaps default boot floppy drive.

1-22

cflow: Generates C flow graph.
buffers. flushall: Flushes all output

fclose, fflush: Closes or flushes a stream. • . • •
flushall: Flushes all output buffers.

CPU. shutdn: Flushes block I/O and halts the

10ckf(S)
mapchan(F)
pack(C)
settime(ADM)
sysadmin(ADM)
Intro(HW)
top(F)
strings(CP)
sum(C)
xlist(S)
fsave(ADM)
mnt(C)
systemid(F)
filesys(F)
tail(C)
tapedump(C)
terminfo(F)
tmpnam(S)
touch(C)
unget(CP)
uniq(C)
uucheck(ADM)
col(CT)
mm(CT)
find(C)
hyphen(CT)
finger(C)
100k(CT)
10gname(S)
10rder(CP)
spell(CT)
ttyname(S)
strings(CP)
ttyslot(S)
finger(C)
dbm(S)
vprintf(S)
badtrk(ADM)
fixhdr(C)
badtrk(ADM)
frexp(S)
fioor(S)
floor(S)
format(C)
diskcp(C)
fdswap(ADM)
cflow(CP)
flushall(DOS)
fclose(S)
flushall(DOS)
shutdn(S)

October 10, 1988

Permuted Index

floor,! floor, fabs, ceil, fmod: Performs absolute value, floor(S)
device. vidi: Sets the font and video mode for a video vidi(C)

stream. fopen, freopen, fdopen: Opens a fopen(S)
fork: Creates a new process. fork(S)

enco: Convert between imPRESS format and human-readable/ deco, deco(CT)
ar: Archive file format. ar(F)

backup: Incremental dump tape format. backup(F)
dump: Incremental dump tape format. dump(F)

format: format floppy disks. format(C)
86rel: Intel 8086 Relocatable Format for Object Modules. 86rel(F)

format: format floppy disks. format(C)
od: Displays files in octal format. od(C)

dir: Format of a directory. dir(F)
file system: Format of a system volume. filesystem(F)

newform: Changes the format of a text file. newform(C)
inode: Format of an inode. inode(F)

sccsfile: Format of an SCCS file. sccsfile(F)
editor output. a.out: Format of assembler and link a.out(F)

file. terminfo: Format of compiled terminfo terminfo(f)
core: Format of core image file. core(F)
cpio: Format of cpio archive. cpio(F)

table. mnttab: Format of mounted file system mnttab(F)
file. acct: Format of per-process accounting acct(F)

group: Format of the group file. • • group(M)
files. mapchan: Format of tty device mapping mapchan(F)

tar: archive format. tar(F)
Translates files from one format to another translate: translate(C)

Convert C/A/T files to imPRESS format. catimp: catimp(CT)
Convert 386 COFF files to XENIX format. coffconv: coffconv(M)

format and human-readable format. /Convert between imPRESS deco(CT)
Convert DVI files to imPRESS format. dviimp: dviimp(CT)

Displays files in hexadecimal format. hd: hd(C)
Converts text files to DVI format. iprint: iprint(C)

cscanf: Converts and formats console input. cscanf(DOS)
fscanf, sscanf: Converts and formats input. scanf, scanf(S)

intro: Introduction to file formats. Intro(F)
eqn,neqn,checkeq, eqncheck: Formats mathematical text fori eqn(CT)

neqn: Formats mathematics. neqn(CT)
entries. utmp, wtmp: Formats of utmp and wtmp utmp(F)

cprintf: Formats output. cprintf(DOS)
printf, fprintf, sprintf: Formats output. printf(S)

troff. tbl: Formats tables for nroff or tbl(CT)
vfprintf, vsprintf: Prints formatted output of a/ vprintf, vprintf(S)

macros. mm: Prints documents formatted with the mm mm(CT)
nroff: A text formatter. nroff(CT)

ratfor: Converts Rational FORTRAN into standard FORTRAN. ratfor(CP)
Rational FORTRAN into standard FORTRAN. ratfor: Converts ratfor(CP)

and segment. fp_off, fp_seg: Return offset fp_seg(DOS)
output. printf, fprintf, sprintf: Formats printf(S)

segment. fp_off, fp_seg: Return offset and fp_seg(DOS)
character to a stream. fputc, fputchar: Write a fputc(DOS)

1-23

Permuted Index

word on a/ putc, putchar,
stream. fputc,
stream. puts,

binary input and output.
main memory. malloc,

fopen,
floating-point number into a/

error-checking file system!
formats input. scanf,

systems.

Repositions a file pointer in a/
semi-automated system backups

check commands.
stat,

information.
file pointer in a/ fseek,

time,
communication package.

function. erf, erfc: Error
gamma: Performs log gamma

setkey: Assigns the
matherr: Error-handling

function and complementary error
sysi86: machine specific

floor, ceiling and remainder
atan2: Performs trigonometric

jn, yO, y 1, yo: Performs Bessel
Performs screen and cursor
nextkey: Performs database

logarithm, power, square root
to DOS cross development

cosh, tanh: Performs hyperbolic
tgoto, tputs: Performs terminal

input and output. fread,
from files. xlist,

gamma: Performs log
function.

conversions. ecvt, fcvt,
adb: Invokes a

report. imacct:
catab file. charmap:

termina1. ctennkl;

fputc, putw: Puts a character or
fputchar: Write a character to a
fputs: Puts a string on a
fread, fwrite: Performs buffered
free, realloc, calloc: Allocates
freopen, fdopen: Opens a stream.
frexp, ldexp, modf: Splits
fsave: Interactive, •••••
fscanf, sscanf: Converts and
fsck: Checks and repairs file
fsdb: File system debugger.
fseek, ftell, rewind: • • • . •
fsphoto: Performs periodic • •
fstab: File system mount and
fstat: Gets file status.
fstatfs: get file system • •
ftell, rewind: Repositions a
ftime: Gets time and date.
ftok: Standard interprocess
ftw: Walks a file tree.
function and complementary error
function. • ••
function keys. • • • • •
function. • ••••••
function. erf, erfc: Error
functions. • ••••
functions. fabsolute value,
functions. fasin, acos, atan,
functions. bessel, jO, j 1, • •
functions. curses:
functions. fdelete, firstkey,
functions. fexponential, • •
functions. intro: Introduction
functions. sinh, •••••
functions. ftgetflag, tgetstr,
fwrite: Performs buffered binary
fxlist: Gets name list entries

putc(S)
fputc(DOS)
puts(S)
fread(S)
malloc(S)

• fopen(S)
frexp(S)
fsave(ADM)
scanf(S)
fsck(ADM)
fsdb(ADM)
fseek(S)
fsphoto(ADM)
fstab(F)
stat(S)
statfs(S)
fseek(S)
time(S)
stdipc(S)
ftw(S)

• erf(S)
gamma(S)
setkey(C)
matherr(S)
erf(S)
sysi86(S)
floor(S)
trig(S)
bessel(S)
curses(S)
dbm(S)
exp(S)
intro(DOS)
sinh(S)
termcap(S)

• fread(S)
xlist(S)
gamma(S)
gamma(S)
ecvt(S)
adb(CP)

gamma function. • • • • • • • •
gamma: Perfonns log garrr~\h
gcvt: Performs output • • • • • •
general-purpose debugger. • • • •
Generate an IMAGEN accounting
Generate troff width files and
Generates a fi!ena..-rne for 3.

imacct(C)
charmap(CT)
.-..f. --.....!....tI'C1\
.. '''1 UUU\")

ptx: Generates a permuted index.
random: Generates a random number.

rand, srand: Generates a random number.
makekey: Generates an encryption key.

ptx(CT)
random(C)
rand(S)
makekey(M)
abort(S)
cflow(CP)
cxref(CP)

1-24

abort: Generates an lOT fault. •••••
cflow: Generates C flow graph.

cross-reference. cxref: Generates C program • •

Permuted Index

numbers. ncheck: Generates names from inode ncheck(ADM)
analysis. lex: Generates programs for lexical lex(CP)

srand48, seed48, 1cong48: Generates uniformly distributed. drand48(S)
Micnet alias hash table generator. aliashash: aliashash(ADM)

character or word from a/ getc, getchar, fgetc, getw: Gets getc(S)
getch: Gets a character. getch(DOS)

character or word from a/ getc, getchar, fgetc, getw: Gets getc(S)
character. getche: Gets and echoes a getche(DOS)

current working directory. getcwd: Get the patbname of getcwd(S)
and put in a file. getdents: read directory entries getdents(S)

getuid, geteuid, getgid, getegid: Gets real user,/ getuid(S)
environment name. getenv: Gets value for getenv(S)

real user, effective/ getuid, geteuid, getgid, getegid: Gets getuid(S)
effective/ getuid, geteuid, getgid, getegid: Gets real user, getuid(S)

setgrent, endgrent: Get group/ getgrent, getgrgid, getgrnam, getgrent(S)
endgrent: Get group/ getgrent, getgrgid, getgrnam, setgrent, getgrent(S)
Get group/ getgrent, getgrgid, getgrnam, setgrent, endgrent: getgrent(S)

getlogin: Gets login name. getlogin(S)
argument vector. getopt: Gets option letter from getopt(S)

getopt: Parses command options. getopt(C)
getpass: Reads a password. getpass(S)

process group, and/ getpid, getpgrp, getppid: Gets process, getpid(S)
process, process group, and! getpid, getpgrp, getppid: Gets getpid(S)
group, and/ getpid, getpgrp, getppid: Gets process, process getpid(S)

userID. getpw: Gets password for a given getpw(S)
setpwent, endpwent: Gets/ getpwent, getpwuid, getpwnam, getpwent(S)
Gets/ getpwent, getpwuid, getpwnam, setpwent, endpwent: getpwent(S)
endpwent: Gets/ getpwent, getpwuid, getpwnam, setpwent, getpwent(S)

fgetc, fgetchar: Gets a character from a stream. fgetc(DOS)
getch: Gets a character. getch(DOS)

an event queue. ev ~etdev: Gets a list of devices feeding ev~etdev(S) ,
shmget: Gets a shared memory segment. shmget(S)

cgets: Gets a string. cgets(DOS)
gets, fgets: Gets a string from a stream. gets(S)

input. gets: Gets a string from the standard gets(CP)
getche: Gets and echoes a character. getche(DOS)
ulimit: Gets and sets user limits. ulimit(S)

getc, getchar, fgetc, getw: Gets character or word from a/ getc(S)
dosexterr: Gets DOS error messages. dosexter(DOS)

nlist: Gets entries from name list. nlist(S)
a stream. gets, fgets: Gets a string from gets(S)

umask: Sets and gets file creation mask. umask(S)
stat, fstat: Gets file status. stat(S)

ustat: Gets file system statistics. ustat(S)
standard input. gets: Gets a string from the gets(CP)

getlogin: Gets login name. getlogin(S)
logname: Gets login name. logname(C)

msgget: Gets message queue. msgget(S)
files. xlist, fxlist: Gets name list entries from xlist(S)

system. uname: Gets name of current XENIX uname(S)
vector. getopt: Gets option letter from argument getopt(S)

1-25

Permuted Index

/getpwnam, setpwent, endpwent: Gets password file entry. getpwent(S)
ID. getpw: Gets password for a given user getpw(S)

times. times: Gets process and child process times(S)
getpid, getpgrp, getppid: Gets process, process group, and! • getpid(S)

real/ /geteuid, getgid, getegid: Gets real user, effective user,. getuid(S)
semget: Gets set of semaphores. semget(S)

file pointer. tell: Gets the current position of the tell(DOS)
filelength: Gets the length of a file. • • • fileleng(DOS)

cuserid: Gets the login name of the user. cuserid(S)
tty: Gets the terminal's name. tty(C)

time, ftime: Gets time and date. • • • • • time(S)
getenv: Gets value for environment name. • getenv(S)

modes, speed, and line/ getty: Sets terminal type, getty(M)
ct: spawn getty to a remote terminal ct(C)

settings used by getty. gettydefs: Speed and terminal gettydefs(F)
and terminal settings used by getty. gettydefs: Speed gettydefs(F)

getegid: Gets real user,! getuid, geteuid, getgid, getuid(S)
from a/ getc, getchar, fgetc, getw: Gets character or word getc(S)

of directories. Is: Gives information about contents • Is(C)
date and time/ ctime, localtime, gmtime, asctime, tzset: Converts • ctime(S)

longjmp: Performs a nonlocal "gote". setjmp, • . • . • • • • setjmp(S)
and checks access to a resource governed by a semaphore. /Awaits waitsem(S)

cflow: Generates C flow graph. • • . • • • • • • • cflow(CP)
file for a pattern. grep, egrep, fgrep: Searches a grep(C)

/real user, effective user, real group, and effective group IDs. getuid(S)
/getppid: Gets process, process group, and parent process IDs. getpid(S)

newgrp: Logs user into a new group. • • • • • . • • . • newgrp(C)
copy: Copies groups of files. ..•..• copy(C)

updates, and regenerates groups of programs. /Maintains, • make(CP)
grpcheck: Checks group file. grpcheck(C)

signals. ssignal, gsignal: Implements software ssignal(S)
shutdn: Flushes block I/O and halts the CPU. • • . • • • • shutdn(S)

file systems and shuts down the/ haltsys, reboot: Closes out the haltsys(ADM)
serial sequence packet protocol handler. ips: Imagen ips(ADM)

ips, isbs, ipbs: IMAGEN protocol handlers. . . • • . . • • • • • ips (ADM)
nohup: Runs a command immune to hangups and quits. nohup(C)

cmchk: Reports hard disk block size. cmchk(C)
dparam: Displays/changes hard disk characteristics. dparam(ADM)

hd: Internal hard disk drive. hd(HW)
hcreate, hdestroy: Manages hash search tables. hsearch, hsearch(S)

aliashash: Micnet alias hash table generator. aliashash(ADM)
spell, hashmake, spellin, hashcheck: Finds spelling/ • spell(CT)

Finds spelling errors. spell, hashmake, spellin, hashcheck: spell(CT)
search tables. hsearch, hcreate, hdestroy: Manages hash . hsearch(S)

hexadecimal format. hd: Displays files in hd(C)
hd: Internal hard disk drive. hd(HW)

tables. hsearch, hcreate, hdestroy: Manages hash search hsearch(S)
executable binary files. hdr: Display'S selected parts of hdr(CP)

Changes executable binary file headers. fixhdr: .••.•• fixhdr(C)

1-26

user. hello: Send a message to another • hello(ADM)
program. assert: Helps verify validity of •.••• assert(S)

October 10, 1988

Permuted Index

hd: Displays files in hexadecimal format. hd(C)
Machine: Description of host machine. • • • machine(HW)

Manages hash search tables. hsearch, hcreate, hdestroy: hsearch(S)
between imPRESS format and human-readable format. /Convert • deco(Cn

information. hwconfig: Read the configuration • hwconfig(ADM)
sinh, cosh, tanh: Performs hyperbolic functions. •••••• sinh(S)

hyphen: Finds hyphenated words. • hyphen(CT)
hyphen: Finds hyphenated words. • • • hyphen(CT)

Euclidean distance. hypot, cabs: Determines hypot(S)
chgrp: Changes group ID. ••••••..• chgrp(C)

chown: Changes owner ID. ••••••••• chown(C)
and names. id: Prints user and group IDs ide C)

setpgrp: Sets process group ID. ••••• setpgrp(S)
mkuser: Adds a login ID to the system. • • • • • mkuser(ADM)

systemid: The Micnet system identification file. systemid(F)
devnm: Identifies device name. devnm(C)

what: Identifies files. what(C)
Gets password for a given user ID. getpw: •••••. getpw(S)

idleout: Logs out idle users. ••••••• idleout(ADM)
idleout: Logs out idle users. idleout(ADM)

id: Prints user and group IDs and names. •••••• id(C)
group, and parent process IDs. /Gets process, process getpid(S)

real group, and effective group IDs. /real user, effective user, getuid(S)
setgid: Sets user and group IDs. setuid, • • • • • • • • setuid(S)

accounting report. imacct: Generate an IMAGEN imacct(C)
core: Format of core image file. ••••••• core(F)

mem, kmem: Memory image file. •••••••• mem(M)
imacct: Generate an IMAGEN accounting report. imacct(C)

imprint: Prints text files on an IMAGEN printer. imprint(C)
imprint: print text files on an IMAGEN printer. imprint(cn
/imagen.spp, imagen.remote: IMAGEN printer interface/ imagen(M)

itroff. Troffto an IMAGEN printer. itroff(cn
ipr, oldipr: Put files onto the IMAGEN printer queue. • ipr(C)

ips, isbs, ipbs: IMAGEN protocol handlers. ips(ADM)
protocol handler. ips: Imagen serial sequence packet ips(ADM)

imagen.remote:/ imagen.sbs, imagen.pbs, imagen.spp, imagen(M)
/imagen.pbs, imagen.spp, imagen.remote: IMAGEN printer/ • imagen(M)

imagen.spp, imagen.remote:/ imagen.sbs, imagen.pbs, • • • imagen(M)
IMAGEN/ imagen.sbs, imagen. pbs, imagen.spp, imagen.remote: imagen(M)

nohup: Runs a command immune to hangups and quits. nohup(C)
ssignal, gsignal: Implements software signals. ssignal(S)

deco, enco: Convert between imPRESS format and/ deco(CT)
catimp: Convert C/M files to imPRESS format. catimp(cn

dviimp: Convert DVI files to imPRESS format. dviimp(CT)
IMAGEN printer. imprint: print text files on an imprint(cn
IMAGEN printer. imprint: Prints text files on an imprint(C)

event input. ev ~dev: include/exclude devices for ev ~dev(S)
backup: Incremental dump tape format. backup(F)

dump: Incremental dump tape format. dump(F)
backup: Performs incremental file system backup. backup(C)

dump: Performs incremental file system backup. dump(C)

1-27

Permuted Index

restore, restor: Invokes
dirent: file system

ptx: Generates a permuted
and teletypes last:

/Default backup device
hwconfig: Read the configuration

pstat: Reports system
fstatfs: get file system
statfs: get file system

prints lineprinter status
initialization. init,

initialization.
init, inir: Process control
process. popen, pelose:

terminals file.
clri: Clears

incremental file system/ • • •
independent directory entry.
index. • •••••.••
Indicate last logins of users
information.
information.
information.
information.
information.
information. lpstat:
inir: Process control
init, inir: Process control
initialization.
Initiates I/O to or from a
inittab: Alternative login
inode. • ••••••
inode: Format of an inode.

inode: Format of an inode.
ncheck: Generates names from

fwrite: Performs buffered binary
Performs standard buffered
Pushes character back into

usemouse: Maps mouse
Converts and formats console

Opens an event queue for
Gets a string from the standard

devices for event
sscanf: Converts and formats

Eliminates .so's from nroff
uustat: uucp status

script.
install:

creatsem: Creates an

call.
call.

abs: Returns an
l164a: Converts between long

sputl, sgetl: Accesses long
the absolute value of a long

I1to13: Converts between 3-byte
itoa: CO!lverts !lumbers to

inode numbers.
inp: Returns a byte.
input and output. fread, • • • • •
input and output. stdio:
input stream. ungetc: • • • • • •
input to keystrokes
input. cscanf:
input. ev _open:
input. gets: • • • • • • •
input. /inelude/exelude
input. scanf, fscanf,
input. soelim: • • • •
inquiry and job control.
install: Installation shell • • • • •
Installation shell script.
instance of a binary semaphore.
int86: Executes an interrupt.
int86x: Executes an interrupt.
intdos: Invokes a DOS system
intdosx: Invokes a DOS system
integer absolute value. •••••
integer and base 64 ASCII.
integer data in aI . • • •
integer, labs: Returns , ,
integers and long integers.

ltoa: Converts long integers to characters. • • •
between 3-byte integers and long integers. I1to13: Converts

atol, atoi: Converts string to integer. strtol,
for Object Modules. 86rel:. Intel 8086 Relocatable Format

filesystem backup fsave: Interactive, error-checking • •
imagen.remote: IMAGEN printer interface scripts. /imagen.spp,

scsi: Small computer systems interface. • • • • • • • • •

1-28

restore(C)
dirent(F)
ptx(CT)
last(C)
archive(F)
hwconfig(ADM)
pstat(C)
statfs(S)
statfs(S)
Ipstat(C)
init(M)
init(M)
init(M)
popen(S)
inittab(F)
clri(ADM)
inode(F)
inode(F)
ncheck(ADM)
inp(DOS)
fread(S)
stdio(S)
ungetc(S)
usemouse(C)
cscanf(DOS)
ev_open(S)
gets(CP)
ev~indev(S)
scanf(S)
soelim(CT)
uustat(C)
install(M)
install(M)
creatsem(S)
int86(DOS)
int86x(DOS)
intdos(DOS)
intdosx(DOS)
abs(S)
a64I(S)
sputl(S)
bh,,(nnl;l\ "'_...,V\'- __ /

13tol(S)
:+~"ln"C'\
J.t.va\LJ1\JU)

Itoa(DOS)
13tol(S)
strtol(S)
86rel(F)
fsave(ADM)
imagen(M)
scsi(HW)

Permuted Index

interface. • •••.•• termio: General terminal
/, tty2[a-h) , tty2[A-H):

tty: Special terminal
lp 1, Ip2: Line printer device

hd:
spline:

sh: Invokes the shell command
csh: Invokes a shell command

a restricted shell (command
ipcs: Reports the status of

package. ftok: Standard
pipe: Creates an

int86: Executes an
int86x: Executes an

sleep: Suspends execution for an
sleep: Suspends execution for an

Suspends execution for a short
services, library routines and/

processing commands.
commands.

Interface to serial ports. • • • • •
interface. • ••••••
interfaces. lp, IpO,

termio(M)
serial(HW)
tty(M)
Ip(HW)
hd(HW)
spline(CP)
sh(C)

Internal hard disk drive.
Interpolates smooth curve.
interpreter. •••.••
interpreter with C-like syntax.
interpreter). rsh: Invokes
inter-process communication!
interprocess communication
interprocess pipe.
interrupt.
interrupt.
interval.
interval.
interval. nap:
intro: Introduces system
intro: Introduces text
intro: Introduces XENIX

Development System commands. intro: Introduces XENIX
development functions. intro: Introduction to DOS cross

formats. intro: Introduction to file
miscellaneous features and! intro: Introduction to

related miscellaneous features/ intro: Introduction to machine
library routines and/ intro: Introduces system services,

commands. intro: Introduces text processing
intro: Introduces XENIX commands.

System commands. intro: Introduces XENIX Development
development functions. intro: Introduction to DOS cross

intro: Introduction to file fonnats.
miscellaneous features/ intro: Introduction to machine related

features and files. intro: Introduction to miscellaneous
bc: Invokes a calculator.

yacc: Invokes a compiler-compiler.
bdos: Invokes a DOS system call.

intdos: Invokes a DOS system call.
intdosx: Invokes a DOS system call.

debugger. adb: Invokes a general-purpose
m4: Invokes a macro processor.

calendar: Invokes a reminder service.
(command interpreter). rsh: Invokes a restricted shell

red: Invokes a restricted version of.
display/ vi, view, vedit: Invokes a screen-oriented

interpreter with C-like/ csh: Invokes a shell command
ex: Invokes a text editor.

calculator. dc: Invokes an arbitrary precision
restore, restor: Invokes incremental file system/

sdb: Invokes symbolic debugger.
cc: Invokes the C compiler. •

ev _init: Invokes the event manager.

csh(C)
rsh(C)
ipcs(ADM)
stdipc(S)
pipe(S)
int86(DOS)
int86x(DOS)
sleep(C)
sleep(S)
nap(S)
Intro(S)
Intro(CT)
Intro(C)
Intro(CP)

• intro(DOS)
Intro(F)
Intro(M)
Intro(HW)
Intro(S)
Intro(CT)
Intro(C)

• Intro(CP)
intro(DOS)
Intro(F)
Intro(HW)
Intro(M)
bc(C)
yacc(CP)
bdos(DOS)
intdos(DOS)
intdosx(DOS)
adb(CP)
m4(CP)
calendar(C)
rsh(C)
red(C)
vi(C)
csh(C)
ex(C)
dc(C)

• restore(C)
sdb(CP)
cc(CP)
ev_init(S)

1-29

Permuted Index

ld: Invokes the link editor. ...•• Id(CP)
ld: Invokes the link editor. Id(M)

interpreter. sh: Invokes the shell command sh(C)
sed: Invokes the stream editor. sed(C)
ed: Invokes the text editor. ed(C)

masm: Invokes the XENIX assembler. masm(CP)
shutdn: Flushes block I/O and halts the CPU. .•.•. shutdn(S)

select: synchronous I/O multiplexing. select(S)
popen, pelose: Initiates I/O to or from a process. popen(S)

devices. ioctl: Controls character ioctl(S)
abort: Generates an lOT fault. .••••••.•. abort(S)

ips, isbs, ipbs: IMAGEN protocol handlers. . ips(ADM)
semaphore set or shared memory. ipcrm: Removes a message queue, ipcrm(ADM)

inter-process communication! ipcs: Reports the status of ipcs(ADM)
IMAGEN printer queue. ipr, oldipr: Put files onto the ipr(C)

DVI format. iprint: Converts text files to iprint(C)
packet protocol handler. ips: Imagen serial sequence ips(ADM)

handlers. ips, isbs, ipbs: IMAGEN protocol • ips(ADM)
/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/ ctype(S)

isdigit, isxdigit,/ ctype, is alpha, isupper, islower, ctype(S)
/isprint, isgraph, iscntrl, isascii, tolower, toupper,/ ctype(S)

device. isatty: Checks for a character isatty(DOS)
terminal. ttyname, isatty: Finds the name of a • . ttyname(S)

handlers. ips, isbs, ipbs: IMAGEN protocol ips(ADM)
/ispunct, isprint, isgraph, iscntrl, isascii, tolower'/ • . ctype(S)

/isalpha, isupper, islower, isdigit, isxdigit, isalnum,/ ctype(S)
/isspace, ispunct, isprint, isgraph, iscntrl, isascii,/ ctype(S)

ctype, isalpha, isupper, islower, isdigit, isxdigit,/ ctype(S)
/isalnum, isspace, ispunct, isprint, isgraph, iscntrl,/ ctype(S)
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/ ctype(S)
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/ ctype(S)
isxdigit,/ ctype, isalpha, isupper, islower, isdigit, ctype(S)
/isupper, islower, isdigit, isxdigit, isalnum, isspace,/ ctype(S)

news: Print news items. •••••••• news(C)
integers. itoa: Converts numbers to itoa(DOS)

printer. itroff: Troffto an IMAGEN itroff(CT)
Bessel functions. bessel, jO, j 1, jn, yO, y 1, yn: Performs bessel(S)

Bessel functions. bessel, jO, jl,jn, yO, yl, yn: Performs . bessel(S)
functions. bessel, jO, jl, jn, yO, yl, yn: Performs Bessel bessel(S)

join: Joins two relations. join(C)
join: Joins two relations. • • • • • join(C)

keystroke. kbhit: Checks the consoie for a
test keyboard support kbmode: Set keyboard mode or

error: Kernel error output device.
makekey: Generates an encryption key. • ••••••••••

kbhit(DOS)
kbmode(ADM)
error(M)
makekey(M)
keyboard(HW) keyboard: The PC keyboard. •.••.•••

support kbmode: Set keyboard mode or test keyboard
Set keyboard mode or test keyboard support kbmode:

keyboard: The PC keyboard.
setkey: Assigns the function keys.

kbhit: Checks the console for a keystroke. •.••••.

1-30

• kbmode(ADM)
kbmode(ADM)
keyboard(HW)
setkey(C)
kbhit(DOS)

October 10, 1988

usemouse: Maps mouse input to
process or a group off

mem,
contents of directory.

3-byte integers and long/
integer and base 64/ a641,

of a long integer.
cpp: The C

lint: Checks C
diction: Checks

explain: Corrects
shl: Shell
columns.

distributed. srand48, seed48,

floating-point number/ frexp,
filelength: Gets the
stden: Returns the

getopt: Gets option
banner: Prints large

lexical analysis.
lex: Generates programs for

and update. Isearch,
ar: Maintains archives and

keystrokes .••...
kill: Sends a signal to a
kill: Tenninates a process.
krnem: Memory image file.
I: Lists infonnation about
13tol, lto13: Converts between
164a: Converts between long
labs: Returns the absolute value
language preprocessor.
language usage and syntax.
language usage.
language usage.
layer manager.
Ie: Lists directory contents in
Ieong48: Generates unifonnly
Id: Invokes the link editor.
Id: Invokes the link editor.
Idexp, modf: Splits
length of a file.
length of a string.
letter from argument vector.
letters. • . . • . •
lex: Generates programs for
lexical analysis. ••••••
lfind: Perfonns linear search
libraries.

Converts archives to random libraries. ranlib:
/Introduces system services, library routines and error/

ordering relation for an object library. lorder: Finds
ulimit: Gets and sets user limits. . • . • • • • •

line: Reads one line. • • • • . • • . •
lsearch, lfind: Perfonns linear search and update.

Permuted Index

usemouse(C)
kill(S)
kill(C)
mem(M)
1(C)
13tol(S)
a641(S)
labs(DOS)
cpp(CP)
lint(CP)
diction(CT)
explain(CT)
shl(C)
lc(C)
drand48(S)
Id(CP)
Id(M)
frexp(S)
fileleng(DOS)
strlen(DOS)
getopt(S)
banner(C)
lex(CP)
lex(CP)
Isearch(S)
ar(CP)
ranlib(CP)
Intro(S)
10rder(CP)
ulimit(S)
line(C)

col: Filters reverse linefeeds. ••••.•••••
Isearch(S)
col(CT)
Ipr(C) lpr: Sends files to the lineprinter queue for printing.

lpshut, lpmove: Starts/stops the lineprinter request. Ipsched,
Ipadmin: Configures the lineprinter spooling system.

lpstat: prints lineprinter status infonnation.
cancel: Send/cancel requests to lineprinter. lp, lpr,

Adds, reconfigures and maintains lineprinters. Ipinit: • • •
files. comm: Selects or rejects lines common to two sorted

uniq: Reports repeated lines in a file.
look: Finds lines in a sorted list.

head: Prints the first few lines of a stream.
paste: Merges lines of files.

wc: Counts lines, words and characters.
ld: Invokes the link editor.
ld: Invokes the link editor. ••••••

a.out: Fonnat of assembler and link editor output.
existing file. link: Links a new filename to an
In: Makes a link to a file.

dosld: XENIX to MS-DOS cross linker. • • • . • • • • • •

Ipsched(ADM)
Ipadmin(ADM)
Ipstat(C)
Ip(C)
Ipinit(ADM)
comm(C)
uniq(C)
100k(CT)
head(C)
paste(CT)
wc(C)
Id(CP)
Id(M)
a.out(F)

• link(S)
In(C)
dosld(CP)

1-31

Permuted Index

existing file. link: Links a new filename to an • •
and syntax. lint: Checks C language usage

xlist, fxlist: Gets name list entries from files.
look: Finds lines in a sorted list.

link(S)
lint(CP)
xlist(S)
100k(CT)

nlist: Gets entries from name list. ••••••. • • • • • • nlist(S)
nm: Prints name list. .••••••• nm(CP)

queue. ev ~etdev: Gets a list of devices feeding an event ev ~etdev(S)
by fsck. checklist: List of file systems processed checklist(F)

terminals: List of supported terminals. terminals(M)
varargs: variable argument list. •••••••••• varargs(S)

cref: Makes a cross-reference listing. • • . • • • . • . • cref(CP)
of a varargs argument list. /Prints formatted output vprintf(S)

columns. Ie: Lists directory contents in Ic(C)
of directory. 1: Lists information about contents • 1(C)

who: Lists who is on the system. who(C)
In: Makes a link to a file. In(C)

tzset: Converts date and/ ctime, localtime, gmtime, asctime,
end, etext, edata: Last locations in program.

memory. lock: Locks a process in primary
lock: Locks a user's terminal.

memory. plock:
record locking on files.

region for reading or writing.

Lock process, text, or data in
lockf: Provide semaphores and
locking: Locks or unlocks a file
locking on files. lockf:
Locks a process in primary
Locks a user's terminal.
Locks or unlocks a file region
log gamma function.
log, pow, sqrt, log 10: Performs
log 1 0: Performs exponential,
logarithm, power, square root/
login ID to the system.
login name. . •.••

ctime(S)
end(S)

• 10ck(S)
10ck(C)
plock(S)
10ckf(S)
10cking(S)
10ckf(S)
10ck(S)
10ck(C)
10cking(S)
gamma(S)
exp(S)
exp(S)
exp(S)
mkuser(ADM)
getlogin(S)
10gname(C)

Provide semaphores and record
memory. lock:

lock:
for reading or/ locking:

gamma: Performs
exponential, logarithm,! exp,

logarithm,! exp, log, pow, sqrt,
/log 10: Performs exponential,

mkuser: Adds a
getlogin: Gets
logname: Gets

cuserid: Gets the
logname: Finds

passwd: Changes
chsh: changes user

terminal:
inittab: Alternative

ttys:

login name .••••
login name of the user.
login name of user. • •
login password.

• • • • • cuserid(S)

Sets up an environment at
last: Indicate last

user~

login shell in password file.
Login terminal.
login terminals file.
Login terminals file.
login time. profile:
logins of users and teletypes
!ogna...'11e: Fi..."'1cS login name ~f
logname: Gets login name.

idleout: Logs out idle users.
newgrp: Logs user into a new group.

"goto". setjmp, longjmp: Performs a nonlocal
for an object library. lorder: Finds ordering relation

uppercase. strupr: Converts lowercase characters to
Converts uppercase characters to lowercase. strlwr: •••••

1-32

10gname(S)
passwd(C)
chsh(ADM)
termL'1al(HW)
inittab(F)
ttys(F)
profile(M)
last(C)

logname(C)
idleout(ADM)
newgrp(C)
setjmp(S)
lorder(CP)
strupr(DOS)
strlwr(DOS)

device interfaces.
requests to lineprinter.
device interfaces. Ip,

interfaces. lp, IpO,
interfaces. Ip, IpO, Ipl,

lineprinter spooling system.
maintains lineprinters.

lineprinter/ Ipsched, Ipshut,
requests to lineprinter. Ip,

lineprinter queue for printing.
attached to the user's terminal

Starts/stops the lineprinter/
lineprinter request. Ipsched,

status information.
contents of directories.

search and update.
pointer.

characters.
integers and long! 13tol,

machine.
Machine: Description of host

features/ intro: Introduction to
sysi86:

Accesses long integer data in a
m4: Invokes a

mmcheck: Checks usage of MM
formatted with the mm

program. tape:
tapedump: Dumps

of mail.
daemon.mn: Micnet

Sends, reads or disposes of
binary file for transmission via
binary file for transmission via
free, realloc, calloc: Allocates

fdisk:
libraries. ar:

Ipinit: Adds, reconfigures and
regenerates groups off make:

systty: System
tape: Magnetic tape

key.
cref:

execseg:
SCCS file. delta:

mkdir:
or ordinary file. mknod:

In:

Permuted Index

Ip, IpO, Ipl, Ip2: Line printer
Ip, Ipr, cancel: Send/cancel
IpO, Ip I, Ip2: Line printer
lp 1, Ip2: Line printer device
Ip2: Line printer device
Ipadmin: Configures the • • •
Ipinit: Adds, reconfigures and
Ipmove: Starts/stops the • • • • •
Ipr, cancel: Send/cancel
Ipr: Sends files to the
Iprint: Print to a printer
Ipsched, Ipshut, Ipmove:
Ipshut, Ipmove: Starts/stops the
Ipstat: prints lineprinter
Is: Gives information about
Isearch, lfind: Performs linear
Iseek: Moves read/write file
ltoa: Converts long integers to
Ito13: Converts between 3-byte
m4: Invokes a macro processor.
Machine: Description of host •
machine. • ••••••••
machine related miscellaneous
machine specific functions.
machine-independent. /sgetl:
macro processor. •••••
macros. checkmm, • • • • •
macros. mm: Prints documents
Magnetic tape maintenance
magnetic tape to output file.
mail: Sends, reads or disposes
mailer daemon.
mail. mail: •••••••
mail uudecode: decode a
mail uuencode: encode a
main memory. malloc,

Ip(HW)
Ip(C)
Ip(HW)
Ip(HW)
Ip(HW)
Ipadmin(ADM)
Ipinit(ADM)
Ipsched(ADM)
Ip(C)
Ipr(C)
Iprint(C)
Ipsched(ADM)
Ipsched(ADM)
Ipstat(C)
Is(C)
Isearch(S)
Iseek(S)
Itoa(DOS)
13tol(S)
m4(CP)
machine(HW)
machine(HW)
Intro(HW)
sysi86(S)
sput1(S)
m4(CP)
checkmm(CT)
mm(CT)
tape(C)
tapedump(C)
mail(C)
daemon.mn(M)
mail(C)
uuencode(C)
uuencode(C)
malloc(S)
fdisk(ADM) Maintain disk partitions .

Maintains archives and
maintains lineprinters.
Maintains, updates, and
maintenance device.

• • • • • ar(CP)
• • • • • Ipinit(ADM)

make(CP)
systty(M)

maintenance program.
makekey: Generates an encryption
Makes a cross-reference listing.
makes a data region executable.
Makes a delta (change) to an •
Makes a directory. •••••
Makes a directory, or a special
Makes a link to a file. • • • •

tape(C)
makekey(M)
cref(CP)

mktemp: Makes a unique filename.
another user. su: Makes the user a super-user or

• execseg(S)
delta(CP)
mkdir(C)
mknod(S)
In(C)
mktemp(S)
su(C)

1-33

Permuted Index

Allocates main memory. malloc, free, realloc, calloc: malloc(S)
ev _init: Invokes the event manager. • • . • • • • ev _init(S)

shl: Shell layer manager. • • • • • • • • shl(C)
tsearch, tfind, tdelete, twalk: Manages binary search trees. tsearch(S)

hsearch, hcreate, hdestroy: Manages hash search tables. hsearch(S)
/floating-point number into a mantissa and an exponent. frexp(S)

ascii: Map of the ASCII character set. ascii(M)
mapping. mapchan: Configure tty device mapchan(M)

mapping files. mapchan: Format of tty device mapchan(F)
convkey: Configure monitor/ mapkey, mapscm, mapstr, mapkey(M)

mapchan: Format of tty device mapping files. . . • • . . mapchan(F)
mapchan: Configure tty device mapping. • • . • • • • • mapchan(M)

Configure monitor screen mapping. /mapstr, convkey: mapkey(M)
usemouse: Maps mouse input to keystrokes • usemouse(C)

Configure monitor/ mapkey, mapscm, mapstr, convkey: . • mapkey(M)
monitor screen/ mapkey, mapscm, mapstr, convkey: Configure mapkey(M)

diffink: Marks differences between files. • diffink(CT)
ev _setemask: Sets event mask. •••••••••••. ev _stemsk(S)

umask: Sets file-creation mode mask. •.•••• umask(C)
Return the current event mask. ev ~etemask: ev ~temsk(S)

Sets and gets file creation mask. umask: • • • umask(S)
assembler. masm: Invokes the XENIX masm(CP)

master: Master device information table. • master(F)
information table. master: Master device master(F)

Regular expression compile and match routines. regexp: • • • regexp(S)
/neqn, checkeq, eqncheck: Formats mathematical text for nroff,/ eqn(CT)

neqn: Formats mathematics. •.••••• neqn(CT)
function. matherr: Error-handling matherr(S)

mem, kmem: Memory image file. • mem(M)
mem, kmem: Memory image file. mem(M)

lock: Locks a process in primary memory. 10ck(S)
shmctl: Controls shared memory operations. shmctl(S)
shmop: Performs shared memory operations. shmop(S)

shmget: Gets a shared memory segment. shmget(S)
Reports virtual memory statistics. vmstat: vmstat(C)

realloc, calloc: Allocates main memory. malloc, free, •.•.• malloc(S)
Lock process, text, or data in memory. plock: plock(S)

queue, semaphore set or shared memory. !Removes a message ipcrm(ADM)
administration/ sysadmsh: Menu driven system sysadmsh(ADM)

sort: Sorts and merges files. •.•..•• sort(C)
paste: Merges lines of files. paste(CT)

sent to a terminal. mesg: Permits or denies messages • mesg(C)
msgctl: Provides message control operations. msgctl(S)

mkstr: Creates an error message file from C source. mkstr(CP)
msgop: Message operations. msgop(S)

msgget: Gets message queue. •.••. msgget(S)
shared memory. ipcrm: Removes a message queue, semaphore set or . ipcrm(ADM)

hello: Send a message to another user. hello(ADM)
console messages. messages: Description of system • messages(M)

dosexterr: Gets DOS error messages. .•...••. dosexter(DOS)
mesg: Permits or denies messages sent to a terminal. mesg(C)

1-34 October 10, 1988

Permuted Index

Description of system console messages. messages: messages(M)
ermo: Sends system error messages. /sys_nerr, •••••• perror(S)

telinit, mkinittab: Alternative method of turning terminals onl telinit(ADM)
generator. aliashash: Micnet alias hash table aliashash(ADM)

faliases: Micnet aliasing files. .••..• aliases(M)
micnet: The Micnet default commands file. micnet(F)
daemon.mn: Micnet mailer daemon. daemon.mn(M)

file. systemid: The Micnet system identification systemid(F)
commands file. micnet: The Micnet default micnet(F)

top, top.next: The Micnet topology files. top(F)
/Introduction to machine related miscellaneous features and/ Intro(HW)

files. intro: Introduction to miscellaneous features and Intro(M)
mkdir: Creates a new directory. mkdir(DOS)
mkdir: Makes a directory. mkdir(C)
mkfs: Constructs a file system. mkfs(ADM)

turning terminals onl telinit, mk.inittab: Alternative method of • telinit(ADM)
mknod: Builds special files. mknod(C)

special or ordinary file. mknod: Makes a directory, or a • • mknod(S)
file from C source. mkstr: Creates an error message • mkstr(CP)

mktemp: Makes a unique filename. mk.temp(S)
system. mkuser: Adds a login ID to the mkuser(ADM)

mmcheck: Checks usage of MM macros. checkmm, • • • • • checkmm(Cf)
with the mm macros. mm: Prints documents formatted • mm(Cf)

macros. checkmm, mmcheck: Checks usage of MM • checkmm(CT)
mmt: Typesets documents. • • mmt(CT)
mnt: Mount a filesystem • • • mnt(C)

system table. mnttab: Format of mounted file mnttab(F)
vidi: Sets the font and video mode for a video device. vidi(C)

umask: Sets file-creation mode mask. • • • • • • • • • • umask(C)
chmod: Changes mode of a file. • . • • • • • • • chmod(S)

kbmode: Set keyboard mode or test keyboard support kbmode(ADM)
setmode: Sets translation mode. setmode(DOS)

dial: Dials a modem. •••••• dial(ADM)
uuchat: dials a modem. ••••••.•••• dial(ADM)

getty: Sets terminal type, modes, speed, and line/ getty(M)
tset: Sets terminal modes. ••••.•••••• tset(C)

number into a/ frexp, ldexp, modf: Splits floating-point frexp(S)
settime: Changes the access and modification dates of files. settime(ADM)

touch: Updates access and modification times of a file. touch(C)
utime: Sets file access and modification times. • • • • utime(S)

Relocatable Format for Object Modules. 86rel: Intel 8086 86rel(F)
profile. monitor: Prepares execution monitor(S)

/mapstr, convkey: Configure monitor screen mapping. mapkey(M)
uusub: Monitor uucp network. uusub(C)

tty[OI-n], color, monochrome, ega,. screen: screen(HW)
mnt: Mount a file system . • • • mnt(C)

fstab: File system mount and check commands. fstab(F)
mount: Mounts a file structure. mount(ADM)
mount: Mounts a file system. mount(S)

mnttab: Format of mounted file system table. mnttab(F)
/Default information for mounting filesystems. • • • filesys(F)

1-35

Permuted Index

mount: Mounts a file structure. mount(ADM)
mount: Mounts a file system. mount(S)

usemouse: Maps mouse input to keystrokes usemouse(C)
mouse: System mouse. ..•••.•. mouse(HW)

mouse: System mouse. .•••. mouse(HW)
specific address. movedata: Copies bytes from a movedata(DOS)

mvdir: Moves a directory. ••••• mvdir(C)
directories. mv: Moves or renames files and mv(C)

lseek: Moves read/write file pointer. Iseek(S)
utility mscreen: Serial multiscreens mscreen(M)

dosld: XENIX to MS-DOS cross linker. dosld(CP)
operations. msgctl: Provides message control • msgctl(S)

msgget: Gets message queue. msgget(S)
msgop: Message operations. msgop(S)

select: synchronous I/O multiplexing. ••••••• select(S)
mscreen: Serial multiscreens utility • • . • • mscreen(M)

directories. mv: Moves or renames files and mv(C)
mvdir: Moves a directory. mvdir(C)

devnm: Identifies device name. devnm(C)
getlogin: Gets login name. getlogin(S)
logname: Gets login name. 10gname(C)

pwd: Prints working directory name. pwd(C)
tty: Gets the terminal's name. tty(C)

Gets value for environment name. getenv: ••••• getenv(S)
ncheck: Generates names from inode numbers. ncheck(ADM)

basename: Removes directory names from pathnames. basename(C)
archive. dumpdir: Prints the names of files on a backup dumpdir(C)

term: Conventional names. • • • • • • • • • term(CT)
Prints user and group IDs and names. id: ••••••• id(C)

short interval. nap: Suspends execution for a nap(S)
access to a resource/ waitsem, nbwaitsem: Awaits and checks waitsem(S)

inode numbers. ncheck: Generates names from ncheck(ADM)
mathematical text fori eqn, neqn, checkeq, eqncheck: Formats eqn(CI')

neqn: Formats mathematics. neqn(CT)
network. netutil: Administers the XENIX netutil(ADM)

netutil: Administers the XENIX network. • . • • . • • • • netutil(ADM)
uusub: Monitor uucp network. • . • • • • • • • • • uusub(C)

text file. newform: Changes the format of a • newform(C)
group. newgrp: Logs user into a new newgrp(C)

news: Print news items. • • . • • • • • news(C)
news: Print news items. news(C)

/fetch, store, delete, firstkey, nextkey: Performs database/ dbm(S)
process. nice: Changes priority of a • • nice(S)

different priority. nice: Runs a command at a nice(C)
nl: Adds line numbers to a file. nl(C)

list. nlist: Gets entries from name. nlist(S)
nm: Prints name list. nm(CP)

hangups and quits. nohup: Runs a command immune to nohup(C)
setjmp, longjmp: Performs a nonlocal "goto". setjmp(S)

false: Returns with a nonzero exit value. • . false(C)
nroff. A text formatter. nroff(CI')

1-36

soelim: Eliminates .so's from
tbl: Fonnats tables for

Fonnats mathematical text for
Tenninal driving tables for

constructs. deroff: Removes
null: The

nroffinput.
nroff or troff.
nroff, troff. leqncheck:
nroff. tenn: . • • • •
nroff/troff, tbl, and eqn
null file. ••.••

Permuted Index

soelim(CT)
tbl(CT)
eqn(CT)
tenn(F)
deroff(CT)
null(F)

null: The null file.
factor: Factor a number.

random: Generates a random number.
rand, srand: Generates a random number.

• • • • • • • null(F)
factor(C)
random(C)
rand(S)

nl: Adds line numbers to a file.
ultoa: Converts numbers to characters.

itoa: Converts numbers to integers.
atoi, atol: Converts ASCII to numbers. atof,
Generates names from inode numbers. ncheck: •••••

library routines and error numbers. Isystem services,
a string to a double-precision number. strtod, atof: Converts

size: Prints the size of an object file. •.•••
the printable strings in an object file. strings: Finds

Finds ordering relation for an object library. lorder: • •
8086 Relocatable Fonnat for Object Modules. 86rel: Intel

a process until a signal occurs. pause: Suspends
od: Displays files in octal fonnat. ••.•••

fonnat. od: Displays files in octal
of turning tenninals on and off. IAlternative method

fp_off, fp_seg: Return offset and segment. • • •
Invokes a restricted version of. red: ••••••

IMAGEN printer queue. ipr, oldipr: Put files onto the
new file or rewrites an existing one. creat: Creates a

ipr,oldipr: Put files onto the IMAGEN printer queue.
and writing. sopen: Opens a file for shared reading

opensem: Opens a semaphore.
fopen, freopen, fdopen: Opens a stream. ••••••

ev _open: Opens an event queue for input.
writing. open: Opens file for reading or • •

opensem: Opens a semaphore.

nl(C)
ultoa(DOS)
itoa(DOS)
atof(S)
ncheck(ADM)
Intro(S)
strtod(S)
size(CP)
strings(CP)
10rder(CP)
86rel(F)
pause(S)
od(C)
od(C)
telinit(ADM)
fp_seg(DOS)
red(C)
ipr(C)
createS)

• ipr(C)
sopen(DOS)
opensem(S)
fopen(S)
ev_open(S)
open(S)
opensem(S)
directory(S)
msgctl(S)
msgop(S)

closedir: Perfonns directory
msgct1: Provides message control

msgop: Message
semct1: Controls semaphore
semop: Perfonns semaphore

shmctl: Controls shared memory
shmop: Perfonns shared memory

strdup: Perfonns string

operations.
operations.
operations.
operations.
operations.
operations.
operations.

• • • • • semctl(S)
semop(S)
shmctl(S)
shmop(S)

vector. getopt: Gets
stty: Sets the

getopt: Parses command
library. lorder: Finds

a directory, or a special or
Copies file archives in and

dial: Establishes an

operations.
option letter from argument
options for a tenninal.
options. • .••••••
ordering relation for an object
ordinary file. mknod: Makes
out. cpio: •••••
out-going terrninallinel

string(S)
getopt(S)
stty(C)
getopt(C)
10rder(CP)
mknod(S)
cpio(C)
dial(S)

1-37

Permuted Index

port. outp: Writes a byte to an output outp(DOS)
flushall: Flushes all output buffers. flushall(DOS)

ecvt, fcvt, gcvt: Perfonns output conversions. ecvt(S)
cprintf: Fonnats output. cprintf(DOS)

error: Kernel error output device. error(M)
tapedump: Dumps magnetic tape to output file. tapedump(C)

/vsprintf: Prints fonnatted output of a varargs/ vprintf(S)
outp: Writes a byte to an output port. outp(DOS)

pr: Prints files on the standard output. pr(C)
of assembler and link editor output. a.out: Fonnat a.out(F)

buffered binary input and output. fread, fwrite: Perfonns fread(S)
fprintf, sprintf: Fonnats output. printf, printf(S)

standard buffered input and output. stdio: Perfonns stdio(S)
chown: Changes the owner and group of a file. chown(S)

chown: Changes ownerID. chown(C)
quot: Summarizes file system ownership. quot(C)

and expands files. pack, pcat, unpack: Compresses pack(C)
interprocess communication package. ftok: Standard stdipc(S)
ips: Imagen serial sequence packet protocol handler. ips(ADM)

Gets process, process group, and parent process IDs. /getppid: getpid(S)
getopt: Parses command options. getopt(C)

fdisk: Maintain disk partitions. fdisk(ADM)
files. hdr: Displays selected parts of executable binary hdr(CP)

passwd: Changes login password. passwd(C)
passwd: The password file. passwd(F)

pwadmin: Perfonns password aging administration. pwadmin(ADM)
putpwent: Writes a password file entry. putpwent(S)

setpwent, endpwent: Gets password file entry. /getpwnam, getpwent(S)
passwd: The password file. passwd(F)

pwcheck: Checks password file. pwcheck(C)
changes user login shell in password file. chsh: chsh(ADM)

getpw: Gets password for a given user ID. getpw(S)
getpass: Reads a password. getpass(S)

passwd: Changes login password. passwd(C)
paste: Merges lines of files. paste(CT)

directory. getcwd: Get the pathname of current working getcwd(S)
Delivers directory part of pathname. dirname: dirname(C)

Removes directory names from pathnames. basename: . basename(C)
Searches for and processes a pattern in a file. awk: awk(C)

fgrep: Searches a file for a pattern. grep, egrep, grep(C)
a signal occurs. pause: Suspends a process until pause(S)
keyboard: Tne PC keyboard. keyboard(HW)

expands files. pack, pcat, unpack: Compresses and pack(C)
a process. popen, pc1ose: Initiates I/O to or from popen(S)

bsearch: Perfonns a binary search. bsearch(S)
setjmp, longjmp: Perfonns a nonlocal "goto". setjmp(S)

qsort: PerfOImS a quicker sort. qsort(S)
floor, fabs, ceil, fmod: Perfonns absolute value, floor,/ floor(S)

bessel,jO,jI, jn, yO, yI, yn: Perfonns Bessel functions. bessel(S)
and output. fread, fwrite: Perfonns buffered binary input fread(S)
/delete, firstkey, nextkey: Perfonns database functions. dbm(S)

1-38 October 10, 1988

Permuted Index

elosedir: Perfonns directory operations. directory(S)
exp, log, pow, sqrt, 10glO: Perfonns exponential, logarithm,/ • exp(S)

restores files. sysadmin: Perfonns file system backups and • sysadmin(ADM)
sinh, cosh, tanh: Perfonns hyperbolic functions. sinh(S)

backup. backup: Perfonns incremental file system • backup(C)
backup. dump: Perfonns incremental file system • dump(C)

update. lsearch,lfind: Perfonns linear search and • Isearch(S)
gamma: Perfonns log gamma function. gamma(S)

ecvt, fcvt, gcvt: Perfonns output conversions. ecvt(S)
administration. pwadmin: Perfonns password aging pwadmin(ADM)
system backups fsphoto: Perfonns periodic semi-automated • fsphoto(ADM)

functions. curses: Perfonns screen and cursor curses(S)
semop: Perfonns semaphore operations. • semop(S)

operations. shmop: Perfonns shared memory shmop(S)
and output. stdio: Perfonns standard buffered input . stdio(S)

strdup: Perfonns string operations. • • string(S)
/tgetflag, tgetstr, tgoto, tputs: Perfonns tenninal functions. tenncap(S)

tan, asin, acos, atan, atan2: Perfonns trigonometric/ /cos, trig(S)
backups fsphoto: Perfonns periodic semi-automated system • fsphoto(ADM)

check the uucp directories and permissions file uucheck: uucheck(ADM)
chmod: Changes the access pennissions of a file or/ •.••. chmod(C)

to a terminal. mesg: Pennits or denies messages sent . mesg(C)
ptx: Generates a pennuted index. ptx(CT)
acct: Fonnat of per-process accounting file. acct(F)

ermo: Sends system error/ perror, sys_errlist, sys_nerr, perror(S)
split: Splits a file into pieces. . • • • • • . • • split(C)

pipe. pipe: Creates an interprocess pipe(S)
pipe: Creates an interprocess pipe. •.••••.•. pipe(S)

tee: Creates a tee in a pipe. ..••.•.•• tee(C)
data in memory. plock: Lock process, text, or plock(S)

rewind: Repositions a file pointer in a stream. /ftell, fseek(S)
lseek: Moves read/write file pointer. .••••.• Iseek(S)

the current position of the file pointer. tell: Gets tel1(DOS)
queue. ev_pop: Pop the next event off the ev_pop(S)

or from a process. popen, pelose: Initiates I/O to popen(S)
outp: Writes a byte to an output port. ..••••••. outp(DOS)

, tty2[A-H]: Interface to serial ports. /, tty 1 [A-H] , tty2[a-h] serial(HW)
exponential,/ exp, log, pow, sqrt, 10glO: Perfonns • • exp(S)

/perfonns exponential, logarithm, power, square root functions. exp(S)
output. pr: Prints files on the standard pr(C)

dc: Invokes an arbitrary precision calculator. dc(C)
statistical processing. prep: Prepares text for prep(CT)

troff. cw, checkcw, cwcheck: Prepares constant-width text for cw(CT)
monitor: Prepares execution profile. monitor(S)

processing. prep: Prepares text for statistical. prep(CT)
cpp: The C language preprocessor. •••.•. cpp(CP)

unget: Undoes a previous get of an SCCS file. unget(CP)
lock: Locks a process in primary memory. 10ck(S)

types: Primitive system data types. types(F)
to a serial! consoleprint: Print file to printer attached consoleprint(ADM)

news: Print news items. news(C)

1-39

Permuted Index

printer. imprint:
the user's terminal lprint:

file. strings: Finds the
consoleprint: Print file to

terminal lprint: Print to a
lp, IpO, lp 1, Ip2: Line

/imagen.remote: IMAGEN
itroff. Troffto an IMAGEN
Put files onto the IMAGEN

print text files on an IMAGEN
Print to a printer attached to
printable strings in an object
printer attached to a serial! •
printer attached to the user's
printer device interfaces.
printer interface scripts.
printer. •.•.••
printer queue. ipr, oldipr:
printer. imprint:
printer. imprint:
printers.
printers. enable:
printf, fprintf, sprintf:
printing. lpr: Sends files
Prints a calendar.
Prints an SCCS file.
Prints and sets backup dates.
Prints and sets the date.
Prints current SCCS file editing
Prints documents formatted with
Prints files on the standard
Prints formatted output of a/
Prints large letters.
prints lineprinter status
Prints name list.

imprint(CT)
Iprint(C)
strings(CP)
consoleprint(ADM
Iprint(C)
Ip(HW)
imagen(M)
itroff(CT)
ipr(C)
imprint(C)
imprint(CT)
disable(C)
enable(C)
printf(S)
Ipr(C)
cal(C)
prs(CP)
sddate(C)
date(C)
sact(CP)

• mm(CT)
pr(C)
vprintf(S)
banner(C)
Ipstat(C)
nm(CP)

Prints text files on an IMAGEN
print text files on an IMAGEN

disable: Turns off terminals and
Turns on terminals and line

Formats output.
to the lineprinter queue for

cal:
prs:

sddate:
date:

activity. sact:
the mm macros. mm:

output. pr:
vprintf, vfprintf, vsprintf:

banner:
information. lpstat:

nm:
acctcom: Searches for and

yes:
printer. imprint:

stream. head:

prints process accounting files. acctcom(ADM)
Prints string repeatedly. ••••• yes(C)
Prints text files on an IMAGEN imprint(C)
Prints the first few lines of a

XENIX system. uname: Prints the name of the current
backup archive. dumpdir: Prints the names of files on a

file. size: Prints the size of an object • •
names. id: Prints user and group IDs and

pwd: Prints working directory name.
nice: Changes priority of a process.

Runs a command at a different priority. nice: • • • . •
acct: Enables or disables process accounting.

acctcom: Searches for and prints process accounting files.
alarm: Sets a process' alarm clock.

times: Gets process and child process times.
Process control initializaiion.

exit: Terminates the calling process.
CXiL, _~xit; Terminates a process. .••••••

fork: Creates a·new process. •••.•••
/getpgrp, getppid: Gets process, process group, and parenti

setpgrp: Sets process group 10.

I-40

process group, and parent process IDs. /Gets process,
lock: Locks a process in primary memory.

kill: Terminates a process.
nice: Changes priority of a process.

head(C)
uname(C)
dumpdir(C)
size(CP)
id(C)
pwd(C)
nice(S)
nice(C)
acct(S)
acctcom(ADM)
alarm(S)

• times(S)
init(IvI)
exit(DOS)
exit(S)
fork(S)
getpid(S)
setpgrp(S)
getpid(S)
lock(S)
kill(C)
nice(S)

October 10, 1988

kill: Sends a signal to a process or a group of processes.
getpid, getpgrp, getppid: Gets process, process group, and/

ptrace: Traces a process.

Permuted Index

spawnl, spawnvp: Creates a new process. •••••.•••••

kill(S)
getpid(S)
ptrace(S)
spawn(DOS)
ps(C) ps: Reports process status. • . . . •

memory. plock: Lock process, text, or data in
times: Gets process and child process times. • • • • •

wait: Waits for a child process to stop or terminate.
pause: Suspends a process until a signal occurs.
sigsem: Signals a process waiting on a semaphore.

checklist: List of file systems processed by fsck. •••••
awk: Searches for and processes a pattern in a file.

to a process or a group of processes. kill: Sends a signal
Awaits completion of background processes. wait:

intro: Introduces text processing commands.
shutdown: Terminates all processing.

Prepares text for statistical processing. prep:
m4: Invokes a macro processor.

Initiates I/O to or from a process. popen, pclose:

time profile.
prof: Displays

monitor: Prepares execution
at login time.

Creates an execution time
assert: Helps verify validity of

boot: XENIX boot

prof: Displays profile data.
profil: Creates an execution
profile data. . • • • . •
profile. •••••••
profile: Sets up an environment
profile. profil:
program.
program.

tape: Magnetic tape maintenance program.
etext, edata: Last locations in program. end,

cb: Beautifies C programs.
lex: Generates programs for lexical analysis.

xref: Cross-references C
xstr: Extracts strings from C

and regenerates groups of
day. asktime:

Imagen serial sequence packet
ips, isbs, ipbs: IMAGEN

locking on files. lockf:
operations. msgct1:

sxt:
information.

stream. ungetc:
a character or word on a/

console.
character or word on a/ putc,

environment.
entry.

programs.••
programs. • ••.•••
programs. /Maintains, updates,
Prompts for the correct time of
protocol handler. ips: . • • •
protocol handlers. .•.••
Provide semaphores and record
Provides message control
prs: Prints an SCCS file. •
ps: Reports process status.
Pseudo-device driver. • •
pstat: Reports system • • •
ptrace: Traces a process.
ptx: Generates a permuted index.
Pushes character back into input
putc, putchar, fputc, putw: Puts
putch: Writes a character to the
putchar, fputc, putw: Puts a
putenv: Changes or adds value to
putpwent: Writes a password file

plock(S)
times(S)
waiteS)
pause(S)
sigsem(S)
checklist(F)
awk(C)
kill(S)
wait(C)
Intro(CT)
shutdown(ADM)
prep(CT)
m4(CP)
popen(S)
prof(CP)
profileS)
prof(CP)
monitor(S)
profile(M)
profileS)
assert(S)
boot(HW)
tape(C)
end(S)
cb(CP)
lex(CP)
xref(CP)
xstr(CP)
make(CP)
asktime(ADM)
ips (ADM)
ips(ADM)
10ckf(S)
msgct1(S)
prs(CP)
ps(C)
sxt(M)
pstat(C)
ptrace(S)

• ptx(CT)
• ungetc(S)

putc(S)
putch(DOS)
putc(S)

• putenv(S)
• putpwent(S)

1-41

Permuted Index

putc, putchar, fputc, putw:
puts, fputs:

cputs:

Puts a character or word on a/ putc(S)
Puts a string on a stream. puts(S)
Puts a string to the console. cputs(DOS)

stream.
on a/ putc, putchar, fputc,

administration.

puts, fputs: Puts a string on a puts(S)
putw: Puts a character or word putc(S)
pwadmin: Performs password aging pwadmin(ADM)
pwcheck: Checks password file. . pwcheck(C)

name. pwd: Prints working directory pwd(C)
qsort: Performs a quicker sort. qsort(S)

tput:
ev _close: Close the event

ev_block: Wait until the

Queries the terminfo database. tput(C)
queue and all associated/ ev 310se(S)

ev _resume: Restart a suspended
ev _suspend: Suspends an event

-ev_open: Opens an event
Sends files to the lineprinter

msgget: Gets message
ipcrm: Removes a message

all events currently in the
list of devices feeding an event

Pop the next event off the
Read the next event in the

files onto the IMAGEN printer
of events currently in the

qsort: Performs a
a command immune to hangups and

ownership.
number.
number.

ranlib: Converts archives to

queue contains an event.
queue. . •..
queue. . ..•.•.•
queue for input.
queue for printing. lpr:
queue. . •.•..•
queue, semaphore set or shared/
queue. ev _flush: Discard
queue. ev ~etdev: Gets a
queue. ev _pop:
queue. ev Jead:
queue. ipr,oldipr: Put
queue. !Returns the number
quicker sort. •...••.
quits. nohup: Runs • . • .
quot: Summarizes file system
rand, srand: Generates a random
random: Generates a random
random libraries.

random: Generates a random number.
rand, srand: Generates a random number.

random libraries. ranlib: Converts archives to
FORTRAN into standard FORTRAN. ratfor: Converts Rational

FORTRAN. ratfor: Converts Rational FORTRAN into standard
systems. rcp: Copies files across XENIX

data to be read. rdchk: Checks to see if there is

ev _block(S)
ev _resume(S)
ev_susp(S)
ev_open(S)
Ipr(C)
msgget(S)
ipcrm(ADM)
ev _flusheS)
ev ~etdev(S)
ev_pop(S)
ev_read(S)
ipr(C)
ev _count(S)
qsort(S)
nohup(C)
quot(C)

. rand(S)
random(C)
ranlib(CP)
random(C)
rand(S)
ranlib(CP)
ratfor(CP)

• ratfor(CP)
rcp(C)
rdchk(S)

in a file. getdents: read directory entries and put getdents(S)
read: Reads from a file. .•••. read(S)

information. hwconfig: Read the configuration hwconfig(ADM)
queue. ev _read: Read the next event in the ev _read(S)

sopen: Opens a file for shared reading a.'1d writing.
open: Opens file for reading or writing.

sopen(DOS)
open(S)
iudung(S)
rdchk(S)
getpass(S)
defopen(S)
read(S)
line(C)
mail(C)
Iseek(S)

1-42

o!' !!nlccks 2. file regiG~ fGr rcudh"J.g vi' Vv·iitilig. /Lv\,.;k.~

to see if there is data to be read. rdchk: Checks
getpass: Reads a password.

defopen, defread: Reads default entries.
read: Reads from a file.
line: Reads one line.

mail: Sends, reads or disposes of mail.
lseek: Moves read/write file pointer.

October 10, 1988

memory. malloc, free, realloc, calloc: Allocates main
clock: The system real-time (time of day) clock.

setclock: Sets the system real-time (time of day) clock.
systems and shuts down/ haltsys, reboot: Closes out the file

Specifies what to do upon receipt of a signal. signal:
lineprinters. lpinit: Adds, reconfigures and maintains

lockf: Provide semaphores and record locking on files.
version of. red: Invokes a restricted .

regular expressions. regex, regcmp: Compiles and executes
expressions. regcmp: Compiles regular

make: Maintains, updates, and regenerates groups of programs.
executes regular expressions. regex, regcmp: Compiles and
compile and match routines. regexp: Regular expression

execseg: makes a data region executable.
locking: Locks or unlocks a file region for reading or writing.

match routines. regexp: Regular expression compile and
regcmp: Compiles regular expressions.

regcmp: Compiles and executes regular expressions. regex,
sorted files. comm: Selects or rejects lines common to two
intro: Introduction to machine related miscellaneous features/

lorder: Finds ordering relation for an object library.
join: Joins two relations. • •

Modules. 86rel: Intel 8086 Relocatable Format for Object
strip: Removes symbols and relocation bits. ...•..

value, floor, ceiling and remainder functions. /absolute
calendar: Invokes a reminder service. .••..

remote XENIX system. remote: Executes commands on a
uutry: try to contact remote system with debugging on
ct: spawn getty to a remote terminal

remote: Executes commands on a remote XENIX system.
uux: Executes command on remote XENIX.

file. rmdel: Removes a delta from an SCCS
semaphore set or shared/ ipcrm: Removes a message queue,

system. rmuser: Removes a user account from the
rmdir: Removes directories.

unlink: Removes directory entry.
pathnames. basename: Removes directory names from

rm, rmdir: Removes files or directories.
eqn constructs. deroff. Removes nroff/troff, tbl, and

bits. strip: Removes symbols and relocation
directory. rename: renames a file or

rename: renames a file or directory. . .
mv: Moves or renames files and directories.

fsck: Checks and repairs file systems.
uniq: Reports repeated lines in a file.

yes: Prints string repeatedly.
blocks. df: Report number of free disk

Generate an IMAGEN accounting report. imacct:•
clock: Reports CPU time used. • .

cmchk: Reports hard disk block size.
ps: Reports process status.

Permuted Index

malloc(S)
clock(F)
setclock(ADM)
haltsys(ADM)
signal(S)
Ipinit(ADM)
10ckf(S)
red(C)
regex(S)
regcmp(CP)

· make(CP)
regex(S)
regexp(S)
execseg(S)
10cking(S)

· regexp(S)
regcmp(CP)
regex(S)
comm(C)
Intro(HW)
10rder(CP)
join(C)
86rel(F)
strip(CP)
floor(S)
calendar(C)

· remote(C)
· uutry(ADM)

ct(C)
remote(C)
uux(C)
rmdel(CP)
ipcrm(ADM)

· rmuser(ADM)
rmdir(C)
unlink(S)
basename(C)
rm(C)
deroff(CT)

• strip(CP)
rename(DOS)
rename(DOS)
mv(C)
fsck(ADM)
uniq(C)
yes(C)
df(C)
imacct(C)
clock(S)
cmchk(C)
ps(C)

1-43

Permuted Index

file. uniq: Reports repeated lines in a .
pstat: Reports system information.

inter-process/ ipcs: Reports the status of
vmstat: Reports virtual memory statistics.

stream. fseek, ftell, rewind: Repositions a file pointer in a
Starts/stops the lineprinter request. /lpshut, lpmove:

lp, lpr, cancel: Send/cancel requests to lineprinter.
/Awaits and checks access to a resource governed by a/

ev _resume: Restart a suspended queue.
incremental file/ restore, restor: Invokes

Invokes incremental file system/ restore, restor: • . . • •
Invokes incremental file system restorer. /restor:

Performs file system backups and restores files. sysadmin:
interpreter). rsh: Invokes a restricted shell (command

red: Invokes a restricted version of.
fp_off, fp_seg: Return offset and segment.
ev ~etemask: Return the current event mask.

stat: Data returned by stat system call.
inp: Returns a byte.

console buffer. ungetch: Returns a character to the
value. abs: Returns an integer absolute

long integer. labs: Returns the absolute value of a
strlen: Returns the length of a string.

currently in the/ ev _count: Returns the number of events •
value. false: Returns with a nonzero exit

true: Returns with a zero exit value.
col: Filters reverse linefeeds. •••.••

in a string. strrev: Reverses the order of characters
pointer in aI fseek, ftell, rewind: Repositions a file

creat: Creates a new file or rewrites an existing one. .
directories. rm, rmdir: Removes files or
SCCS file. rmdel: Removes a delta from an

rmdir: Deletes a directory.
rmdir: Removes directories.

directories. rm, rmdir: Removes files or
from the system. rmuser: Removes a user account

chroot: Changes the root directory. . . • • • •
chroot: Changes root directory for command.

logarithm, power, square root functions. /exponential,
/system services, library routines and error numbers.

expression compile and match routines. regexp: Regular
(comm!lnd Ll1terpreter). rsh: Invokes a restricted shell

priority. nice: Runs a command at a different

uniq(C)
pstat(C)
ipcs(ADM)

• vmstat(C)
fseek(S)
Ipsched(ADM)
Ip(C)
waitsem(S)
ev _resume(S)
restore(C)
restore(C)
restore(C)
sysadmin(ADM)
rsh(C)
red(C)
fp_seg(DOS)
ev ~temsk(S)
stat(F)
inp(DOS)
ungetch(DOS)
abs(S)
labs(DOS)
strlen(DOS)
eV30unt(S)
false(C)
true(C)
col(CT)
strrev(DOS)
fseek(S)
createS)
rm(C)
rmdel(CP)
rmdir(DOS)
rmdir(C)
rm(C)

• rmuser(ADM)
chroot(S)
chroot(ADM)
exp(S)
Intro(S)
regexp(S)
rsh(C)
nice(C)

Runs a c0lluIJ.ruJ.d lii~lJJ.iUHt; LV lJa.uc;up:-.. uullup(Cj

1-44

editing activity.
space allocation.

work. uucico:
and formats input.

bfs:
creates bad track/ badtrk:
help: Asks for help about

sact: Prints current SCCS file • •
sbrk, brk: Changes data segment
Scan the spool directory for
scanf, fscanf, sscanf: Converts
Scans big files. ..•.••
Scans fixed disk for flaws and
SCCS commands.

sact(CP)
• sbrk(S)

uucico(C)
scanf(S)
bfs(C)
badtrk(ADM)
help(CP)

October 10, 1988

the delta commentary of an SCCS delta. cdc: Changes
comb: Combines SCCS deltas. ...•.

sact: Prints current SCCS file editing activity.
prs: Prints an SCCS file.

rmde1: Removes a delta from an SCCS file.
sccsfile: Format of an SCCS file.

val: Validates an SCCS file.
Makes a delta (change) to an SCCS file. delta:

admin: Creates and administers SCCS files.
Compares two versions of an SCCS file. sccsdiff:
Undoes a previous get of an SCCS file. unget:

of an SCCS file. sccsdiff: Compares two versions
file. sccsfile: Format of an SCCS

system backups schedule: Database for automated
transport program uusched: the scheduler for the uucp file

curses: Performs screen and cursor functions.
clear: Clears a terminal

setcolor: Set
convkey: Configure monitor

color, monochrome, ega,.
vi, view, vedit: Invokes a
install: Installation shell

IMAGEN printer interface
interface.

dates.
access to a shared datal

shared data segment. sdget,
detaches a shared data segment.

shared data access.
side-by -side.

a shared data segment. sdenter,
data access. sdgetv,

lsearch, lfind: Performs linear
bsearch: Performs a binary

hcreate, hdestroy: Manages hash
tdelete, twalk: Manages binary

grep, egrep, fgrep:
accounting files. acctcom:

pattern in a file. awk:

screen. . .•....
screen color. .••.••
screen mapping. Imapstr,
screen: tty [Ol-n],
screen-oriented display editor.
script. .••.....•
scripts. limagen.remote:
scsi: Small computer systems •
sdb: Invokes symbolic debugger.
sddate: Prints and sets backup
sdenter, sdleave: Synchronizes
sdfree: Attaches and detaches a
sdget, sdfree: Attaches and
sdgetv, sdwaitv: Synchronizes
sdiff: Compares files
sdleave: Synchronizes access to
sdwaitv: Synchronizes shared
search and update.
search. • •..••••
search tables. hsearch,
search trees. tsearch, tfind,
Searches a file for a pattern.
Searches for and prints process
Searches for and processes a
sed: Invokes the stream editor.

uniformly distributed. srand48, seed48, 1cong48: Generates
brkcd: Allocates data in a far segment. . . . • • . •

shmget: Gets a shared memory
sbrk, brk: Changes data

fp_seg: Return offset and
and detaches a shared data

access to a shared data

segment. . ••.•.••
segment space allocation.
segment. fp_off, . • . .
segment. Isdfree: Attaches
segment. Isdleave: Synchronizes
segread: command description.
select: synchronous I/O

Permuted Index

cdc (CP)
comb(CP)
sact(CP)
prs(CP)
rmdel(CP)
sccsfile(F)
val(CP)
delta(CP)
admin(CP)
sccsdiff(CP)
unget(CP)

• sccsdiff(CP)
sccsfile(F)

• schedule(ADM)
uusched(ADM)
curses(S)
clear(C)
setcolor(C)
mapkey(M)
screen(HW)
vi(C)
install(M)
imagen(M)
scsi(HW)
sdb(CP)
sddate(C)
sdenter(S)
sdget(S)
sdget(S)
sdgetv(S)
sdiff(C)
sdenter(S)
sdgetv(S)
Isearch(S)
bsearch(S)
hsearch(S)
tsearch(S)
grep(C)
acctcom(ADM)
awk(C)
sed(C)
drand48(S)
brkcd(S)

••. shmget(S)
sbrk(S)
fp_seg(DOS)
sdget(S)

multiplexing.
a file. cut: Cuts out selected fields of each line of • •

• sdenter(S)
segread(DOS)
select(S)
cut(CT)

1-45

Permuted Index

binary files. hdr: Displays selected parts of executable hdr(CP)
to two sorted files. comm: Selects or rejects lines common comm(C)

opensem: Opens a semaphore. • • • • opensem(S)
semctl: Controls semaphore operations. semctl(S)
semop: Performs semaphore operations. semop(S)

ipcrm: Removes a message queue, semaphore set or shared memory. • ipcrm(ADM)
to a resource governed by a semaphore. land checks access • • waitsem(S)

Creates an instance of a binary semaphore. creatsem: ••••• creatsem(S)
files. lockf: Provide semaphores and record locking on • 10ckf(S)
semget: Gets set of semaphores. .••••• semget(S)

Signals a process waiting on a semaphore. sigsem: sigsem(S)
operations. semctl: Controls semaphore semctl(S)

semget: Gets set of semaphores. • semget(S)
fsphoto: Performs periodic semi-automated system backups • fsphoto(ADM)

operations. semop: Performs semaphore semop(S)
hello: Send a message to another user. hello(ADM)

lineprinter. lp, lpr, cancel: Send/cancel requests to Ip(C)
group of processes. kill: Sends a signal to a process or a kill(S)

queue for printing. lpr: Sends files to the lineprinter Ipr(C)
mail. mail: Sends.readsordisposesof..mai1(C)

/sys_errlist, sys_nerr, errno: Sends system error messages. perror(S)
mesg: Permits or denies messages sent to a terminal. mesg(C)

handler. ips: Imagen serial sequence packet protocol ips(ADM)
file to printer attached to a serial console /Print consoleprint(ADM)

mscreen: Serial multi screens utility mscreen(M)
, tty2[A-H): Interface to serial ports. /, tty2[a-h) serial(HW)

handler. ips: Imagen serial sequence packet protocol ips (ADM)
calendar: Invokes a reminder service. ••••..•• calendar(C)

error/ intro: Introduces system services, library routines and Intro(S)
Map of the ASCII character set. ascii: ••••• ascii(M)

buffering to a stream. setbuf, setvbuf: Assigns • setbuf(S)
real-time (time of day) clock. setclock: Sets the system setclock(ADM)

setcolor: Set screen color. setcolor(C)
setuid, setgid: Sets user and group IDs. setuid(S)

getgrent, getgrgid, getgmam, setgrent, endgrent: Get group/ getgrent(S)
nonlocal "goto". setjmp, longjmp: Performs a setjmp(S)

keys. setkey: Assigns the function setkey(C)
table. setmnt: Establishes /etc/mnttab setmnt(ADM)

setmode: Sets translation mode. setmode(DOS)
setpgrp: Sets process group ID. setpgrp(S)

getpwent, getpwuid, getpwnam, setpwent, endpwent: Gets/ • • getpwent(S)
alarm: Sets a process' alarm clock. alarm(S)

to one charater. strset: Sets all characters in a string strset(DOS)
mask. umask: Sets and gets file creation umask(S)

sddate: Prints and sets backup dates. .••.• sddate(C)
execution. env: Sets environment for command env(C)

ev _setemask: Sets event mask. . • • • . • ev _stemsk(S)
modification times. utime: Sets file access and . • • • • utime(S)

umask: Sets file-creation mode mask. umask(C)
setpgrp: Sets process group ID. ••••• setpgrp(S)

tset: Sets terminal modes. tset(C)

1-46 October 10, 1988

Permuted Index

speed, and line/ getty: Sets terminal type, modes, getty(M)
base. cmos: Displays and sets the configuration data cmos(HW)

date: Prints and sets the date. date(C)
a video device. vidi: Sets the font and video mode for vidi(C)

stty: Sets the options for a terminal. stty(C)
of day) clock. setclock: Sets the system real-time (time setclock(ADM)

stime: Sets the time. stime(S)
setmode: Sets translation mode. setmode(DOS)

trchan: Translate character sets trchan(M)
time. profile: Sets up an environment at login profile(M)
setuid, setgid: Sets user and group IDs. setuid(S)

ulimit: Gets and sets user limits. ulimit(S)
modification dates of files. settime: Changes the access and settime(ADM)

gettydefs: Speed and terminal settings used by getty. gettydefs(F)
group IDs. setuid, setgid: Sets user and setuid(S)

stream. setbuf, setvbuf: Assigns buffering to a setbuf(S)
data in a/ sput!, sgetl: Accesses long integer sputl(S)

interpreter. sh: Invokes the shell command sh(C)
sdgetv, sdwaitv: Synchronizes shared data access. sdgetv(S)

sdfree: Attaches and detaches a shared data segment. sdget, sdget(S)
Synchronizes access to a shared data segment. /sdleave: sdenter(S)

shmct!: Controls shared memory operations. shmctl(S)
shmop: Performs shared memory operations. shmop(S)

shmget: Gets a shared memory segment. shmget(S)
message queue, semaphore set or shared memory. ipcrm: Removes a ipcrm(ADM)

sopen: Opens a file for shared reading and writing. sopen(DOS)
rsh: Invokes a restricted shell (command interpreter). rsh(C)

sh: Invokes the shell command interpreter. sh(C)
C-like syntax. csh: Invokes a shell command interpreter with csh(C)

system: Executes a shell command. system(S)
chsh: changes user login shell in password file. chsh(ADM)

shl: Shell layer manager. sh1(C)
install: Installation shell script. install(M)

shl: Shell layer manager. shl(C)
operations. shmct!: Controls shared memory shmct!(S)

segment. shmget: Gets a shared memory shmget(S)
operations. shmop: Performs shared memory shmop(S)

nap: Suspends execution for a short interval. nap(S)
halts the CPU. shutdn: Flushes block I/O and shutdn(S)

processing. shutdown: Terminates all shutdown(ADM)
Closes out the file systems and shuts down the system. /reboot: haltsys(ADM)

sdiff: Compares files side-by-side. sdiff(C)
Suspends a process until a signal occurs. pause: pause(S)

upon receipt of a signal. signal: Specifies what to do signal(S)
of processes. kill: Sends a signal to a process or a group kill(S)

semaphore. sigsem: Signals a process waiting on a sigsem(S)
what to do upon receipt of a signal. signal: Specifies signal(S)

gsignal: Implements software signals. ssignal, ssignal(S)
waiting on a semaphore. sigsem: Signals a process sigsem(S)

atan2: Performs trigonometric/ sin, cos, tan, asin, acos, atan, trig(S)
hyperbolic functions. sinh, cosh, tanh: Performs sinh(S)

1-47

Permuted Index

cmchk: Reports hard disk block
chsize: Changes the

size: Prints the
object file.

interval.

size. • ••••••••••• cmchk(C)
chsize(S)
size(CP)
size(CP)

interval.
current/ ttyslot: Finds the

spline: Interpolates
nroff input.

ssignal, gsigna1: Implements
reading and writing.

qsort: Performs a quicker

or rejects lines common to two
look: Finds lines in a

tsort:
sort:

soelim: Eliminates

size of a file.
size of an object file.
size: Prints the size of an
sleep: Suspends execution for an
sleep: Suspends execution for an
slot in the utmp file of the
smooth curve. • . • • • •
soelim: Eliminates .so's from
software signals. • • • • • •
sopen: Opens a file for shared
sort. • •••••••••
sort: Sorts and merges files.
sorted files. comm: Selects
sorted list. ••..•
Sorts a file topologically.
Sorts and merges files.
.so's from nroffinput.

an error message file from C source. mkstr: Creates
sbrk, brk: Changes data segment space allocation. • • •

ct: spawn getty to a remote terminal
spawnl, spawnvp: Creates a new
spawnvp: Creates a new process.
specific address.

process.
spawnl,

movedata: Copies bytes from a
sysi86: machine

cron: Executes commands at
receipt of a signal. signal:

/Sets terminal type, modes,
by getty. gettydefs:

hashcheck: Finds spelling/
spelling/ spell, hashmake,
spellin, hash check: Finds

specific functions.
specified times. •••••
Specifies what to do upon
speed, and line discipline.
Speed and terminal settings used
spell, hashmake, spellin,
spellin, hashcheck: Finds
spelling errors. Ihashmake,
spline: Interpolates smooth
split: Splits a file into •
Splits a file into pieces.

• sleep(C)
• sleep(S)

ttyslot(S)
spline(CP)
soelim(CT)
ssignal(S)
sopen(DOS)
qsort(S)
sort(C)
comm(C)
look(CT)
tsort(CP)
sort(C)
soelim(CT)
mkstr(CP)
sbrk(S)

• ct(C)
• spawn(DOS)
• spawn(DOS)

movedata(DOS)
sysi86(S)
cron(C)
signal(S)
getty(M)

• gettydefs(F)
spell(CT)
spell(CT)
spell(CT)
spline(CP)
split(C)

curve.
pieces.

split:
context. csplit:

into a/ frexp, ldexp, modf:
uuc1ean: uucp

uucico: Scan the
Configures the lineprinter

printf, fprintf,

Splits files according to •••••
Splits floating-point number

split(C)
csplit(C)
frexp(S)

integer data in ai
exponential,/ exp, log, pow,

exponential, logarithm, power,
number. rand,

Generates uniformly/
input. scanf, fscanf,

software signals.
output. stdio: Performs

Converts Rational FORTRAN into
gets: Gets a string from the

1-48

spool directory clean-up • •
spool directory for work.
spooling system. Ipadmin:
sprintf: Formats output. •••••
sputi, sgeti: Accesses tong

uuc1ean(ADM)
uucico(C)
Ipadmin(ADM)
printf(S)
spud(S)

sqrt, log 10: Performs
square root functions. /performs
srand: Generates a random •
srand48, seed48, lcong48:
sscanf: Converts and formats
ssignal, gsignal: Implements
standard buffered input and
standard FORTRAN. ratfor:
standard input.

exp(S)
• exp(S)

rand(S)
drand48(S)
scanf(S)
ssignal(S)
stdio(S)
ratfor(CP)
gets(CP)

October 10, 1988

communication package. ftok:
pr: Prints files on the

lpsched, lpshut, lpmove:
system call.

stat: Data returned by
information.

prep: Prepares text for
ustat: Gets file system

virtual memory
lpstat: prints lineprinter

uustat: uucp
communication! ipcs: Reports the

ps: Reports process
stat, fstat: Gets file

fileno: Determines stream
buffered input and output.

Standard interprocess • • •
standard output.
Starts/stops the lineprinter/
stat: Data returned by stat
stat, fstat: Gets file status.
stat system call.
statfs: get file system
statistical processing.
statistics. • • • . • •
statistics. vmstat: Reports
status information.
status inquiry and job control.
status of inter-process
status. •• • • • • • .
status.
status. ferror, feof, clearerr,
stdio: Performs standard
stime: Sets the time.

Waits for a child process to stop or terminate. wait:
compress: Compress data for storage. •••••

nextkey:/ dbminit, fetch, store, delete, firstkey,
uncompress: Uncompress a stored file.

zcat: Displaya stored file.
operations. strdup: Performs string
Invokes the stream editor. sed:

fopen, freopen, fdopen: Opens a stream. •••.•••
puts, fputs: Puts a string on a stream. ••••••

clearerr, fileno: Determines stream status. ferror, feof,
ffiush: Closes or flushes a stream. fclose, .••••

Gets a character from a stream. fgetc, fgetchar:
fputchar: Write a character to a stream. fputc, • • • • •

Repositions a file pointer in a stream. fseek, ftell, rewind:
Gets character or word from a stream. /getchar, fgetc, getw:

fgets: Gets a string from a stream. gets, .•••••
Prints the first few lines of a stream. head: • • • • • •

Puts a character or word on a stream. /putchar, fputc, putw:
fclose, fcloseall: Closes streams. • • • • •

setvbuf: Assigns buffering to a stream. setbuf,
Pushes character back into input stream. ungetc:

cgets: Gets a string.
gets, fgets: Gets a string from a stream.

gets: Gets a string from the standard input.
puts, fputs: Puts a string on a stream.
strdup: Performs string operations.

yes: Prints string repeatedly.
strlen: Returns the length of a string. . • • • •

strtod, atof: Converts a string to a double-precision!
strtol, atol, atoi: Converts string to integer. • • • •

strset: Sets all characters in a string to one charater. • • •
cputs: Puts a string to the console.

strings in an object file. strings: Finds the printable

Permuted Index

stdipc(S)
pr(C)
Ipsched(ADM)
stat(F)
stateS)
stat(F)
statfs(S)
prep(CT)
ustat(S)
vmstat(C)
Ipstat(C)
uustat(C)
ipcs(ADM)
ps(C)
stateS)
ferror(S)
stdio(S)
stime(S)
waiteS)
compress(C)
dbm(S)
compress(C)
compress(C)
string(S)
sed(C)
fopen(S)
puts(S)
ferror(S)
fclose(S)
fgetc(DOS)
fputc(DOS)
fseek(S)
getc(S)
gets(S)
head(C)
putc(S)
fclose(DOS)
setbuf(S)
ungetc(S)
cgets(DOS)
gets(S)
gets(CP)
puts(S)
string(S)
yes(C)
strlen(DOS)
strtod(S)
strtol(S)
strset(DOS)
cputs(DOS)
strings(CP)

1-49

Permuted Index

strings from C programs. xstr: Extracts
strings: Finds the printable
the order of characters in a

relocation bits.
string.

characters to lowercase.
characters in a string.
string to one charater.

to a double-precision number.

strings in an object file. •••••
string. strrev: Reverses

xstr(CP)
strings(CP)
strrev(DOS)

string to integer.
mount: Mounts a file

strip: Removes symbols and
strlen: Returns the length of a
strlwr: Converts uppercase • •
strrev: Reverses the order of
strset: Sets all characters in a
strtod, atof: Converts a string
strtol, atol, atoi: Converts
structure. • •.••••

umount: Dismounts a file structure. • • . • • • •
characters to uppercase. strupr: Converts lowercase

terminal. stty: Sets the options for a
of a document. style: Analyzes characteristics

or another user. su: Makes the user a super-user
counts blocks in a file. sum: Calculates checksum and

strlp(CP)
strlen(DOS)
strlwr(DOS)
strrev(DOS)
strset(DOS)
strtod(S)
strtol(S)
mount(ADM)
umount(ADM)
strupr(DOS)
stty(C)
style(CT)
su(C)

du: Summarizes disk usage. • • • • •
ownership. quot: Summarizes file system .•••.
sync: Updates the super-block.

sum(C)
du(C)
quot(C)
sync (ADM)

sync: Updates the super-block.
su: Makes the user a super-user or another user.

terminals: List of supported terminals.
keyboard mode or test keyboard support kbmode: Set • • •

ev _resume: Restart a suspended queue.
signal occurs. pause: Suspends a process until a

ev _suspend: Suspends an event queue.
interval. nap: Suspends execution for a short

interval. sleep: Suspends execution for an
interval. sleep: Suspends execution for an

swab: Swaps bytes. • • • .
swapadd: Adds

swab:
fdswap:

sdb: Invokes
strip: Removes

data segment. sdenter, sdleave:
sdgetv, sdwaitv:

select:
command interpreter with C-like

Checks C language usage and
backups and restores files.

administration utility.

I-50

Sends system error/ perror,
functions.

error/ perror, sys_errlist,
config: Configures a XENIX

swap area ••••••
swapadd: Adds swap area
Swaps bytes. ••.•••
Swaps default boot floppy drive.
sxt: Pseudo-device driver.
symbolic debugger.
symbols and relocation bits.
sync: Updates the super-block.
sync: Updates the super-block.
Synchronizes access to a shared
Synchronizes shared data access.
synchronous I/O multiplexing.
syntax. csh~ Tnvokes ~,she!!
syntax. lint: ••••••.
sysadmin: Performs file system
sysadmsh: Menu driven system
sys_errlist, sys_nerr, errno:
sysi86: machine specific
sys_nerr, errno: Sends system
system. • •••••••

sync(S)
su(C)
terminals(M)
kbmode(ADM)
ev _resume(S)
pause(S)
ev_susp(S)
napeS)
sleep(C)
sleep(S)
swab(S)
swapadd(S)
swapadd(S)
swab(S)

• fdswap(ADM)
sxt(M)
sdb(CP)
strip(CP)
sync(ADM)
sync(S)

• sdenter(S)
sdgetv(S)
select(S)

lint(CP)
sysadmin(ADM)
sysadmsh(ADM)
perror(S)
sysi86(S)
perror(S)
config(ADM)

October 10, 1988

Permuted Index

cu: Calls another XENIX system.
mkfs: Constructs a file system.

mkuser: Adds a login ID to the system.

• •••• cu(C)

mount: Mounts a file system.
umount: Unmounts a file
who: Lists who is on the
Automatically boots the

system.
system.

•••••• mkfs(ADM)
mkuser(ADM)
mount(S)
umount(S)

identification file.
the lineprinter spooling

file systems and shuts down the
commands on a remote XENIX

Removes a user account from the
/reboot: Closes out the file

fsck: Checks and repairs file
scsi: Small computer
checklist: List of file

system. autoboot: •••••••
systemid: The Micnet system
system. Ipadmin: Configures
system. /reboot: Closes out the
system. remote: Executes
system. rmuser: •• • • • •
systems and shuts down the/
systems. • ••••••
systems interface.
systems processed by fsck.

who(C)
autoboot(ADM)
systemid(F)
Ipadmin(ADM)
haltsys(ADM)
remote(C)
rmuser(ADM)
haltsys(ADM)
fsck(ADM)
scsi(HW)
checklist(F)
rcp(C) rcp: Copies files across XENIX

the name of the current XENIX
Gets name of current XENIX

device.
aliashash: Micnet alias hash

setmnt: Establishes /etc/mnttab
for flaws and creates bad track

systems. • ••••
system. uname: Prints
system. uname:

• •••• uname(C)

systty: System maintenance
table generator.
table. • ••••••••
table. badtrk: Scans fixed disk

Master device information table. master: • • •

uname(S)
systty(M)
aliashash(ADM)
setmnt(ADM)
badtrk(ADM)
master(F)
mnttab(F) Format of mounted file system table. mnttab: • • •

tbl: Formats tables for nroff or troff.
term: Terminal driving tables for nroff.

hdestroy: Manages hash search tables. hsearch, hcreate,

• •••• tbl(CT)

ctags: Creates a tags file. •••••••
a file. tail: Delivers the last part of

Performs/ sin, cos, tan, asin, acos, atan, atan2:
functions. sinh, cosh, tanh: Performs hyperbolic

backup: Incremental dump tape format. ••••••
dump: Incremental dump tape format. •••••

term(F)
hsearch(S)
ctags(CP)
tail(C)
trig(S)
sinh(S)
backup(F)
dump(F)

• tape(C)
tape(C)
tapedump(C)
tapedump(C)
tar(F)

program. tape: Magnetic tape maintenance
tape: Magnetic tape maintenance program.

tapedump: Dumps magnetic tape to output file. •••••••
output file. tapedump: Dumps magnetic tape to

tar: archive format. • • • • • • •
tar: Archives files.

deroff: Removes nroff/troff, tbl, and eqn constructs.
troff. tbl: Formats tables for nroff or

search trees. tsearch, tfind,

tee: Creates a
last logins of users and

method of turning terminals on/
temporary file. tmpnam,

tmpfile: Creates a
tempnam: Creates a name for a

tdelete, twalk: Manages binary
tee: Creates a tee in a pipe.
tee in a pipe. ••••••
teletypes last: Indicate
telinit, mkinittab: Alternative
tempnam: Creates a name for a
temporary file. •••••
temporary file. tmpnam,
term: Conventional names.

tar(C)
deroff(CT)
tbl(CT)
tsearch(S)
tee(C)
tee(C)
last(C)
telinit(ADM)
tmpnam(S)
tmpfile(S)
tmpnam(S)
term(CT)

I-51

Permuted Index

for nroff. tenn: Terminal driving tables
tenninfo/ capinfo: convert tenncap descriptions into

data base. tenncap: Terminal capability
tenncap: Tenninal capability data base.
terminfo: terminal capability data base.

ct: spawn getty to a remote terminal •••.••..
terminfo: terminal description database.

nroff. term: Terminal driving tables for • •
tgetstr, tgoto, tputs: Perfonns terminal functions. /tgetftag,

termio: General terminal interface. . • . • •
tty: Special terminal interface.

tenn(F)
capinfo(C)
tenncap(M)
tenncap(M)
tenninfo(M)
ct(C)
tenninfo(S)
tenn(F)
tenncap(S)
tennio(M)
tty(M)
dial(S) dial: Establishes an out-going tenninalline connection.

lock: Locks a user's terminal. • . . • . .
terminal: Login tenninal.

tset: Sets terminal modes.

. . • • • 10ck(C)
terminal(HW)
tset(C)

clear: Clears a terminal screen.
gettydefs: Speed and terminal settings used by getty.

stty: Sets the options for a terminal. • • . • • . • . . •
terminal: Login terminal. • . • • •

line discipline. getty: Sets terminal type, modes, speed, and
Generates a filename for a terminal. ctennid:

a printer attached to the user's terminal lprint: Print to
or denies messages sent to a terminal. mesg: Permits

enable: Turns on terminals and line printers.
disable: Turns off terminals and printers.

inittab: Alternative login terminals file. •.•..
ttys: Login tenninals file. •••••.
terminals. terminals: List of supported

tty: Gets the terminal's name. . •
/Alternative method of turning terminals on and off.

tenninals: List of supported terminals. •..•.
isatty: Finds the name of a terminal. ttyname,

exit, _exit: Terminates a process.
kill: Tenninates a process.

shutdown: Tenninates all processing.
exit: Tenninates the calling process.

for a child process to stop or terminate. wait: Waits
tic: Tenninfo compiler. . • • . .

tput: Queries the term info database. .••.•
tenncap descriptions into terminfo descriptions. /convert

tenninfo: Format of compiled terminfo file. ••.••.
terminfo file. terminfo: Format of compiled

data base. terminfo: terminal capability

interface. termio: General terminal
kbmode: Set keyboard mode or test keyboard support

test: Tests conditions.
test: Tests conditions.

ed: Invokes the text editor.
ex: Invokes a text editor.

newfonn: Changes the format of a text file.

clear(C)
gettydefs(F)
stty(C)
terminal(HW)

• getty(M)
ctennid(S)
Iprint(C)
mesg(C)
enable(C)
disable(C)
inittab(F)
ttys(F)
terminals(M)
tty(C)
telinit(ADM)
tenninals(M)
ttyname(S)
exit(S)
kill(C)
shutdown(ADM)
exit(DOS)
waiteS)
tic(C)
tput(C)
capinfo(C)
tenninfo(F)
terminfo(F)
tenninfo(M)
lenninfo(S)
tennio(M)
kbmode(ADM)
test(C)
test(C)
ed(C)
exeC)
newfonn(C)

I-52 October 10, 1988

Permuted Index

diff: Compares two text files. . . • • . . • • . . . diff(C)
imprint: Prints text files on an IMAGEN printer. . imprint(C)
imprint: print text files on an IMAGEN printer. imprint(CT)

iprint: Converts text files to DVI format. iprint(C)
eqncheck: Formats mathematical text for nroff, troff. /checkeq, eqn(CT)

prep: Prepares text for statistical processing. prep(CT)
cwcheck: Prepares constant-width text for troff. cw, checkcw, cw(CT)

nroff: A text formatter. • nroff(CT)
plock: Lock process, text, or data in memory. plock(S)

intro: Introduces text processing commands. Intro(CT)
troff. Typesets text. troff(CT)

binary search trees. tsearch, tfind, tdelete, twalk: Manages tsearch(S)
tgetstr, tgoto, tputs: Performs/ tgetent, tgetnum, tgetflag, termcap(S)

Performs/ tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: termcap(S)
tgoto, tputs: Performs/ tgetent, tgetnum, tgetflag, tgetstr, termcap(S)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: Performs/ termcap(S)
/tgetnum, tgetflag, tgetstr, tgoto, tputs: Performs terminal! termcap(S)

tic: Terminfo compiler. tic(C)
time, ftime: Gets time and date. time(S)

clock: The system real-time (time of day) clock. clock(F)
Sets the system real-time (time of day) clock. setclock: setclock(ADM)

stime: Sets the time. . • • • • stime(S)
Executes commands at a later time. at, batch: at(C)

Sets up an environment at login time. profile: profile(M)
Executes commands at specified times. cron: cron(C)

Gets process and child process times. times: times(S)
file access and modification times. utime: Sets utime(S)

file. tmpfile: Creates a temporary tmpfile(S)
for a temporary file. tmpnam, tempnam: Creates a name tmpnam(S)

/isascii, tolower, toupper, toascii: Classifies or converts/ ctype(S)
conY, toupper, tolower, toascii: Translates characters. conv(S)

characters. conY, toupper, tolower, toascii: Translates conv(S)
/isgraph, iscntrl, isascii, tolower, toupper, toascii:/ ctype(S)

topology files. top, top.next: The Micnet top(F)
files. top, top.next: The Micnet topology top(F)

tsort: Sorts a file topologically. tsort(CP)
top, top.next: The Micnet topology files. • . top(F)

modification times of a file. touch: Updates access and • . touch(C)
/iscntrl, isascii, tolower, toupper, toascii: Classifies or/ ctype(S)

Translates characters. conv, toupper, tolower, toascii: conv(S)
database. tput: Queries the terminfo tput(C)

/tgetflag, tgetstr, tgoto, tputs: Performs terminal! termcap(S)
tr: Translates characters. tr(C)

ptrace: Traces a process. ptrace(S)
disk for flaws and creates bad track table. /Scans fixed badtrk(ADM)

trchan: Translate character sets trchan(M)
one format to another translate: Translates files from translate(C)

conY, toupper, tolower, toascii: Translates characters. • • . conv(S)
tr: Translates characters. • . • • tr(C)

to another translate: Translates files from one format translate(C)
setmode: Sets translation mode. .••.• setmode(DOS)

I-53

Permuted Index

decode a binary file for transmission via mail uudecode:
encode a binary file for transmission via mail uuencode:

the scheduler for the uucp file transport program uusched:
trchan: Translate character sets

ftw: Walks a file
twalk: Manages binary search

acos, atan, atan2: Performs
tbl: Formats tables for nroff or

itroff:

file. charmap: Generate
Prepares constant-width text for

mathematical text for nroff,
with debugging on uutry:

Manages binary search trees.

tree. • ••••••••••
trees. tsearch, tfind, tdelete,
trigonometric functions. lasin,
troff. •••••••••
Troffto an IMAGEN printer.
troff: Typesets text. • • • • •
troff width files and catab
troff. cw, checkcw, cwcheck:
troff. /eqncheck: Formats
try to contact remote system
tsearch, tfind, tdelete, twalk:
tset: Sets terminal modes.

• uuencode(C)
• uuencode(C)

uusched(ADM)
trchan(M)
ftw(S)
tsearch(S)
trig(S)
tbl(CT)
itroff(CT)
troff(CT)
charmap(CT)
cw(CT)
eqn(CT)
uutry(ADM)
tsearch(S)
tset(C)

topologically. tsort: Sorts a file • • • • . tsort(CP)
mapchan: Format of tty device mapping files.
mapchan: Configure tty device mapping.

tty: Gets the terminal's name.
tty: Special terminal interface.

monochrome, ega,. screen: tty [Ol-n], color,
tty2[a-h] ,tty2[A-H]:1 ttyl[a-h], tty I [A-H] ,

tty2[A-H]: Interfacel ttyl[a-h] ttyl[A-H], tty2[a-h] ,
tty2[A-H]:1 ttyl[a-h], tty 1 [A-H] ,tty2[a-h] ,

tol ttyl[a-h] , ttyl[A-H], tty2[a-h], tty2[A-H]: Interface
Interfacel ttyl[a-h] ,ttyl[A-H] tty2[a-h], tty2[A-H]:

I, tty 1 [A-H] ,tty2[a-h], tty2[A-H]: Interface to seriall
ports. I, tty 1 [A-H] ,tty2[a-h] tty2[A-H]: Interface to serial

of a terminal. ttyname, isatty: Finds the name
ttys: Login terminals file.

utmp file of the current user. ttyslot: Finds the slot in the
/mkinittab: Alternative method of turning terminals on and off.

printers. disable: Turns off terminals and

I-54

accton: Turns on accounting.
printers. enable: Turns on terminals and line

trees. tsearch, tfind, tdelete, twalk: Manages binary search
dtype: Determines disk type. ••.••••••

file: Determines file type. •••••••.•
getty: Sets terminal type, modes, speed, and linel

types. types: Primitive system data
types: Primitive system dat~ types.••••

mmt: Typesets documents.

variable. TZ: Time zone environment
/localtime, gmtime, asctime, tzset: Converts date and time tol

uadmin: administrative control.
limits. ulimit: Gets and sets user

characters. ultoa: Converts numbers to
creation mask. umask: Sets and gets file

mask. umask: Sets file-creation mode

mapchan(F)
mapchan(M)
tty(C)
tty(M)
screen(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
ttyname(S)
ttys(F)
ttyslot(S)
telinit(ADM)
disable(C)
accton(ADM)
enable(C)
tsearch(S)
dtype(C)
file(C)
getty(M)
types(F)
tiPes(F)
mmt(CT)
tfoff(CTj
tz(M)

• ctime(S)
uadmin(S)
ulimit(S)
ultoa(DOS)
umask(S)
umask(C)

October 10, 1988

Permuted Index

structure. umount: Dismounts a file umount(ADM)
umount: Unmounts a file system. . umount(S)

XENIX system. uname: Gets name of current uname(S)
current XENIX system. uname: Prints the name of the uname(C)

uncompress: Uncompress a stored file. compress(C)
file. uncompress: Uncompress a stored • compress(C)

file. unget: Undoes a previous get of an SCCS unget(CP)
an SCCS file. unget: Undoes a previous get of unget(CP)

into input stream. ungetc: Pushes character back ungetc(S)
the console buffer. ungetch: Returns a character to ungetch(DOS)

seed48, 1cong48: Generates uniformly distributed. srand48, drand48(S)
a file. uniq: Reports repeated lines in uniq(C)

rnktemp: Makes a unique filename. . . rnktemp(S)
units: Converts units. •• . • • . units(C)

units: Converts units. •.•••• units(C)
unlink: Removes directory entry. . unlink(S)

reading or/ locking: Locks or unlocks a file region for . • • • • 10cking(S)
umount: Unmounts a file system. . . . • • umount(S)

files. pack, pcat, unpack: Compresses and expands • pack(C)
Performs linear search and update. lsearch, lfind: .•••• Isearch(S)

times of a file. touch: Updates access and modification • touch(C)
of programs. make: Maintains, updates, and regenerates groups . make(CP)

sync: Updates the super-block. sync(ADM)
sync: Updates the super-block. sync(S)

lowercase. strlwr: Converts uppercase characters to strlwr(DOS)
Converts lowercase characters to uppercase. strupr: strupr(DOS)

about system activity. uptime: Displays information uptime(C)
lint: Checks C language usage and syntax. lint(CP)

diction: Checks language usage. diction(CT)
du: Summarizes disk usage. .••.• du(C)

explain: Corrects language usage. explain(CT)
checkmm, mmcheck: Checks usage of MM macros. checkmm(CT)

clock: Reports CPU time used. .••..• clock(S)
keystrokes usemouse: Maps mouse input to • usemouse(C)

user. su: Makes the user a super-user or another su(C)
rmuser: Removes a user account from the system. rmuser(ADM)

id: Prints user and group IDs and names. ide C)
setuid, setgid: Sets user and group IDs. setuid(S)

/getgid, getegid: Gets real user, effective user, real! getuid(S)
environ: The user environment. environ(M)

hello: Send a message to another user. .••••• hello(ADM)
getpw: Gets password for a given user ID. ••.••• getpw(S)

newgrp: Logs user into a new group. newgrp(C)
ulirnit: Gets and sets user limits. ulirnit(S)

file. chsh: changes user login shell in password chsh(ADM)
logname: Finds login name of user. •..•••.••• 10gname(S)

group/ /Gets real user, effective user, real group, and effective getuid(S)
write: Writes to another user. .••••• write(C)

Gets the login name of the user. cuserid: cuserid(S)
last: Indicate last logins of users and teletypes last(C)

finger: Finds information about users. .••••• finger(C)

I-55

Permuted Index

idleout: Logs out idle users.•. idleout(ADM)
lock: Locks a user's terminal. 10ck(C)

to a printer attached to the user's terminal lprint: Print Iprint(C)
wall: Writes to all users.• wall(ADM)

the user a super-user or another user. su: Makes su(C)
in the utmp file of the current user. tty slot: Finds the slot ttyslot(S)

statistics. ustat: Gets file system ustat(S)
mscreen: Serial multiscreens utility•••• mscreen(M)
driven system administration utility. sysadmsh: Menu sysadmsh(ADM)

modification times. utime: Sets file access and utime(S)
utmp, wtmp: Formats of utmp and wtmp entries. utmp(F)

endutent, utmpname: Accesses utmp file entry. getut(S)
ttyslot: Finds the slot in the utmp file of the current user. ttyslot(S)

wtmp entries. utmp, wtmp: Formats of utmp and utmp(F)
entry. endutent, utmpname: Accesses utmp file getut(S)

uuchat: dials a modem. dial(ADM)
directories and permissions/ uucheck: check the uucp uucheck(ADM)

for work. uucico: Scan the spool directory • uucico(C)
clean-up uuclean: uucp spool directory uuclean(ADM)

Administers UUCP control files. uuinstall: uuinstall(ADM)
file uucheck: check the uucp directories and permissions • uucheck(ADM)

uusched: the scheduler for the uucp file transport program uusched(ADM)
uusub: Monitor uucp network. . . • . . • uusub(C)

uuclean: uucp spool directory clean-up uuclean(ADM)
control. uustat: uucp status inquiry and job uustat(C)

for transmission via mail uudecode: decode a binary file uuencode(C)
for transmission via mail uuencode: encode a binary file uuencode(C)

files. uuinstall: Administers UUCP control uuinstall(ADM)
file copy. uuto, uupick: Public XENIX-to-XENIX • uuto(C)

uucp file transport program uusched: the scheduler for the uusched(ADM)
job control. uustat: uucp status inquiry and uustat(C)

uusub: Monitor uucp network. uusub(C)
XENIX-to-XENIX file copy. uuto, uupick: Public uuto(C)

system with debugging on uutry: try to contact remote uutry(ADM)
XENIX. uux: Executes command on remote uux(C)

val: Validates an SCCS file. val(CP)
val: Validates an SCCS file. val(CP)

assert: Helps verify validity of program. assert(S)
abs: Returns an integer absolute value. .•.•..••. abs(S)

ceil, fmod: Performs absolute value, floor, ceiling and/ /fabs, floor(S)
getenv: Gets value for environment name. getenv(S)

labs: Returns the absolute value of a long integer. labs(DOS)
putenv: Changes or adds value to environment. putenv(S)

true: Returns with a 7ero exit value. _ _ . . . • • truc(C}
Returns with a nonzero exit value. false: false(C)

varargs: variable argument list. varargs(S)
varargs: variable argument list. .•••• varargs(S)

TZ: Time zone environment variable. •••..•••• tz(M)
Gets option letter from argument vector. getopt: •.•.•.•. getopt(S)

display editor. vi, view, vedit: Invokes a screen-oriented • vi(C)
assert: Helps verify validity of program. . • assert(S)

I-56 October 10, 1988

red: Invokes a restricted version of. ••.••
sccsdiff: Compares two versions of an SCCS file.

formatted output of a/ vprintf, vfprintf, vsprintf: Prints
screen-oriented display editor. vi, view, vedit: Invokes a

a binary file for transmission via mail uudecode: decode
a binary file for transmission via mail uuencode: encode

the font and video mode for a video device. vidi: Sets • •
vidi: Sets the font and video mode for a video device.

mode for a video device. vidi: Sets the font and video
screen-oriented display/ vi,

vmstat. Reports
statistics.

file system: Format of a system
Prints formatted output of a/

output of a/ vprintf, vfprintf,
who is on the system and what

background processes.
event. ev _block:

to stop or terminate.
sigsem: Signals a process

stop or terminate. wait:
checks access to a resource/

ftw:

view, vedit: Invokes a
virtual memory statistics.
vms tat: Reports virtual memory
volume. • .•••.•
vprintf, vfprintf, vsprintf:
vsprintf: Prints formatted
w: Displays information about
wait: Awaits completion of
Wait until the queue contains an
wait: Waits for a child process
waiting on a semaphore. • • •
Waits for a child process to
waitsem, nbwaitsem: Awaits and
Walks a file tree. • • • • •
wall: Writes to all users. • •

characters. wc: Counts lines, words and
whodo: Determines who is doing what. ••••••.••

what. whodo: Determines who is doing
charmap: Generate troff width files and catab file.

Permuted Index

red(C)
sccsdiff(CP)
vprintf(S)
vi(C)
uuencode(C)
uuencode(C)
vidi(C)
vidi(C)
vidi(C)
vi(C)
vmstat(C)
vmstat(C)
filesystem(F)
vprintf(S)
vprintf(S)
w(C)
wait(C)

• ev _block(S)
waiteS)
sigsem(S)
waiteS)

• waitsem(S)
ftw(S)
wall(ADM)
wc(C)
whodo(C)

• whodo(C)
charmap(CT)
hyphen(CT)
cd(C)

hyphen: Finds hyphenated words. • • • • • • • • • • • •
cd: Changes working directory.

chdir: Changes the working directory.
pwd: Prints working directory name.

Get the patbname of current working directory. getcwd:
Scan the spool directory for work. uucico: • • • . • •

fputc, fputchar: Write a character to a stream.
write: Writes to a file. • • • •
write: Writes to another user.

outp: Writes a byte to an output port.
console. putch: Writes a character to the • •

putpwent: Writes a password file entry.
write: Writes to a file.
wall: Writes to all users.

chdir(S)
pwd(C)
getcwd(S)
uucico(C)
fputc(DOS)
write(S)
write(C)
outp(DOS)
putch(DOS)
putpwent(S)
write(S)
wall(ADM)

write:
open: Opens file for reading or

a file region for reading or
a file for shared reading and

utmp, wtmp: Formats ofutrnp and
entries. utmp,

commands.

Writes to another user. • • • • • write(C)

Assembler. asx:
masm: Invokes the

writing. • •••••
writing. /Locks or unlocks
writing. sopen: Opens
wtmp entries. •••••
wtmp: Formats of utmp and wtmp
xargs: Constructs and executes
XENIX 8086/186/286/386
XENIX assembler. • • • • •

open(S)
10cking(S)
sopen(DOS)
utmp(F)
utrnp(F)
xargs(C)
asx(CP)
masm(CP)

I-57

Permuted Index

boot: XENIX boot program.
intro: Introduces XENIX commands.

commands. intro: Introduces XENIX Development System
Convert 386 COFF files to XENIX format. coffconv:

netutil: Administers the XENIX network.
config: Configures a XENIX system.

cu: Calls another XENIX system.
uname: Gets name of current XENIX system.

Executes commands on a remote XENIX system. remote:
rcp: Copies files across XENIX systems. • • • •

Prints the name of the current XENIX system. uname:
do sid: XENIX to MS-DOS cross linker.

uux: Executes command on remote XENIX. ••••••.•
uuto, uupick: Public XENIX-to-XENIX file copy.

entries from files. xlist, fxlist: Gets name list
programs. xref: Cross-references C . •
programs. xstr: Extracts strings from C

functions. bessel, jO, j 1, jn, yO, y 1, yn: Performs Bessel
bessel, jO,jl, jn, yO, yl, yn: Performs Bessel! . •
compiler-compiler. yacc: Invokes a .••••

yes: Prints string repeatedly.

I-58

bessel, jO, j 1, jn, yO, y 1, yn: Performs Bessel functions.
zcat: Display a stored file.

true: Returns with a zero exit value.
TZ: Time zone environment variable.

boot(HW)
Intro(C)
Intro(CP)
coffconv(M)
netutil(ADM)
config(ADM)
cu(C)
uname(S)
remote(C)
rcp(C)
uname(C)

• dosld(CP)
uux(C)
uuto(C)
xlist(S)
xref(CP)
xstr(CP)
bessel(S)
bessel(S)
yacc(CP)
yes(C)
bessel(S)
compress(C)
true(C)
tz(M)

October 10, 1988

1()-31-X~

SCO-SI-l-210-025

